790 resultados para County school systems
Resumo:
Recommender systems provide personalized advice for customers online based on their own preferences, while reputation systems generate a community advice on the quality of items on the Web. Both systems use users’ ratings to generate their output. In this paper, we propose to combine reputation models with recommender systems to enhance the accuracy of recommendations. The main contributions include two methods for merging two ranked item lists which are generated based on recommendation scores and reputation scores, respectively, and a personalized reputation method to generate item reputations based on users’ interests. The proposed merging methods can be applicable to any recommendation methods and reputation methods, i.e., they are independent from generating recommendation scores and reputation scores. The experiments we conducted showed that the proposed methods could enhance the accuracy of existing recommender systems.
Resumo:
This thesis presents a novel program parallelization technique incorporating with dynamic and static scheduling. It utilizes a problem specific pattern developed from the prior knowledge of the targeted problem abstraction. Suitable for solving complex parallelization problems such as data intensive all-to-all comparison constrained by memory, the technique delivers more robust and faster task scheduling compared to the state-of-the art techniques. Good performance is achieved from the technique in data intensive bioinformatics applications.
Resumo:
This thesis contains a mathematical investigation of the existence of travelling wave solutions to singularly perturbed advection-reaction-diffusion models of biological processes. An enhanced mathematical understanding of these solutions and models is gained via the identification of canards (special solutions of fast/slow dynamical systems) and their role in the existence of the most biologically relevant, shock-like solutions. The analysis focuses on two existing models. A new proof of existence of a whole family of travelling waves is provided for a model describing malignant tumour invasion, while new solutions are identified for a model describing wound healing angiogenesis.
Resumo:
The impact of simulation methods for social research in the Information Systems (IS) research field remains low. A concern is our field is inadequately leveraging the unique strengths of simulation methods. Although this low impact is frequently attributed to methodological complexity, we offer an alternative explanation – the poor construction of research value. We argue a more intuitive value construction, better connected to the knowledge base, will facilitate increased value and broader appreciation. Meta-analysis of studies published in IS journals over the last decade evidences the low impact. To facilitate value construction, we synthesize four common types of simulation research contribution: Analyzer, Tester, Descriptor, and Theorizer. To illustrate, we employ the proposed typology to describe how each type of value is structured in simulation research and connect each type to instances from IS literature, thereby making these value types and their construction visible and readily accessible to the general IS community.
Resumo:
A multi-season 15N tracer recovery experiment was conducted on an Oxisol cropped with wheat, maize and sorghum to compare crop N recoveries of different fertilisation strategies and determine the main pathways of N losses that limit N recovery in these agroecosystems. In the wheat and maize seasons, 15N-labelled fertiliser was applied as conventional urea (CONV) and urea coated with a nitrification inhibitor (DMPP). In sorghum, the fate of 15N-labelled urea was monitored in this crop following a legume ley pasture (L70) or a grass ley pasture (G100). The fertiliser N applied to sorghum in the legume-cereal rotation was reduced (70 kg N ha−1) compared to the grass-cereal (100 kg N ha−1) to assess the availability of the N residual from the legume ley pasture. Average crop N recoveries were 73 % (CONV) and 77 % (DMPP) in wheat and 50 % (CONV) and 51 % (DMPP) in maize, while in sorghum were 71 % (L70) and 53 % (G100). Data gathered in this study indicate that the intrinsic physical and chemical conditions of Oxisols can be extremely effective in limiting N losses via deep leaching or denitrification. Elevated crop 15N recoveries can be therefore obtained in subtropical Oxisols using conventional urea while in these agroecosystems DMPP urea has no significant scope to increase fertiliser N recovery in the crop. Overall, introducing a legume phase to limit the fertiliser N requirements of the following cereal crop proved to be the most effective strategy to reduce N losses and increase fertiliser N recovery.
Resumo:
This paper reviews the use of multi-agent systems to model the impacts of high levels of photovoltaic (PV) system penetration in distribution networks and presents some preliminary data obtained from the Perth Solar City high penetration PV trial. The Perth Solar City trial consists of a low voltage distribution feeder supplying 75 customers where 29 consumers have roof top photovoltaic systems. Data is collected from smart meters at each consumer premises, from data loggers at the transformer low voltage (LV) side and from a nearby distribution network SCADA measurement point on the high voltage side (HV) side of the transformer. The data will be used to progressively develop MAS models.
Resumo:
When Professor N’Dri Assie-Lumumba asked me to reflect on what ‘ubuntu’ might mean in the context of education in the Caribbean, the first thing that came to mind was an image of pit latrines in impoverished primary schools in poor countries. In this essay, I argue that the continuing problem of pit latrines in these schools symbolizes the failure to solve the problem of poverty, neglect and inadequate provision of education services for people at the bottom rungs of Caribbean and other decolonising societies. I ask what implications the ‘ubuntu’ concept chosen for the 2015 CIES conference would have for reforming education in a direction that combines global reform, ethics and good sense. Educators rarely consider toilets when they are thinking about what is needed to reform the system. But talking about toilets draws attention to the entrenched inequity that persists in education systems across the globe – an inequity that forces many schools and young people to remain at the base of the social pyramid, and that perpetuates a dysfunctional model of education holding back many societies. Starting from the twin images of social pyramids and toilets, we can ask some pointed questions about education reform.
Resumo:
We present a systematic, practical approach to developing risk prediction systems, suitable for use with large databases of medical information. An important part of this approach is a novel feature selection algorithm which uses the area under the receiver operating characteristic (ROC) curve to measure the expected discriminative power of different sets of predictor variables. We describe this algorithm and use it to select variables to predict risk of a specific adverse pregnancy outcome: failure to progress in labour. Neural network, logistic regression and hierarchical Bayesian risk prediction models are constructed, all of which achieve close to the limit of performance attainable on this prediction task. We show that better prediction performance requires more discriminative clinical information rather than improved modelling techniques. It is also shown that better diagnostic criteria in clinical records would greatly assist the development of systems to predict risk in pregnancy. We present a systematic, practical approach to developing risk prediction systems, suitable for use with large databases of medical information. An important part of this approach is a novel feature selection algorithm which uses the area under the receiver operating characteristic (ROC) curve to measure the expected discriminative power of different sets of predictor variables. We describe this algorithm and use it to select variables to predict risk of a specific adverse pregnancy outcome: failure to progress in labour. Neural network, logistic regression and hierarchical Bayesian risk prediction models are constructed, all of which achieve close to the limit of performance attainable on this prediction task. We show that better prediction performance requires more discriminative clinical information rather than improved modelling techniques. It is also shown that better diagnostic criteria in clinical records would greatly assist the development of systems to predict risk in pregnancy.
Resumo:
This paper presents a layered framework for the purposes of integrating different Socio-Technical Systems (STS) models and perspectives into a whole-of-systems model. Holistic modelling plays a critical role in the engineering of STS due to the interplay between social and technical elements within these systems and resulting emergent behaviour. The framework decomposes STS models into components, where each component is either a static object, dynamic object or behavioural object. Based on existing literature, a classification of the different elements that make up STS, whether it be a social, technical or a natural environment element, is developed; each object can in turn be classified according to the STS elements it represents. Using the proposed framework, it is possible to systematically decompose models to an extent such that points of interface can be identified and the contextual factors required in transforming the component of one model to interface into another is obtained. Using an airport inbound passenger facilitation process as a case study socio-technical system, three different models are analysed: a Business Process Modelling Notation (BPMN) model, Hybrid Queue-based Bayesian Network (HQBN) model and an Agent Based Model (ABM). It is found that the framework enables the modeller to identify non-trivial interface points such as between the spatial interactions of an ABM and the causal reasoning of a HQBN, and between the process activity representation of a BPMN and simulated behavioural performance in a HQBN. Such a framework is a necessary enabler in order to integrate different modelling approaches in understanding and managing STS.
Resumo:
A non-linear Kalman filter based control strategy for SVCs located in major load groups is presented. This focusses on the limitation and damping of inter-area modes. It does this through treating local modes as noise and uses a tunable nonlinear control algorithm to improve both first swing stability and system damping. Simulation on a four machine system shows that the Kalman filer can successfully lock on to a desired inter-area mode and obtain a 31% improvement in critical clearing time as well as improved damping.
Resumo:
Battery energy storage systems (BESS) are becoming feasible to provide system frequency support due to recent developments in technologies and plummeting cost. Adequate response of these devices becomes critical as the penetration of the renewable energy sources increases in the power system. This paper proposes effective use of BESS to improve system frequency performance. The optimal capacity and the operation scheme of BESS for frequency regulation are obtained using two staged optimization process. Furthermore, the effectiveness of BESS for improving the system frequency response is verified using dynamic simulations.
Resumo:
Unidirectional inductive power transfer (UIPT) systems allow loads to consume power while bidirectional IPT (BIPT) systems are more suitable for loads requiring two way power flow such as vehicle to grid (V2G) applications with electric vehicles (EVs). Many attempts have been made to improve the performance of BIPT systems. In a typical BIPT system, the output power is control using the pickup converter phase shift angle (PSA) while the primary converter regulates the input current. This paper proposes an optimized phase shift modulation strategy to minimize the coil losses of a series – series (SS) compensated BIPT system. In addition, a comprehensive study on the impact of power converters on the overall efficiency of the system is also presented. A closed loop controller is proposed to optimize the overall efficiency of the BIPT system. Theoretical results are presented in comparison to both simulations and measurements of a 0.5 kW prototype to show the benefits of the proposed concept. Results convincingly demonstrate the applicability of the proposed system offering high efficiency over a wide range of output power.
Resumo:
Extant models of decision making in social neurobiological systems have typically explained task dynamics as characterized by transitions between two attractors. In this paper, we model a three-attractor task exemplified in a team sport context. The model showed that an attacker–defender dyadic system can be described by the angle x between a vector connecting the participants and the try line. This variable was proposed as an order parameter of the system and could be dynamically expressed by integrating a potential function. Empirical evidence has revealed that this kind of system has three stable attractors, with a potential function of the form V(x)=−k1x+k2ax2/2−bx4/4+x6/6, where k1 and k2 are two control parameters. Random fluctuations were also observed in system behavior, modeled as white noise εt, leading to the motion equation dx/dt = −dV/dx+Q0.5εt, where Q is the noise variance. The model successfully mirrored the behavioral dynamics of agents in a social neurobiological system, exemplified by interactions of players in a team sport.