900 resultados para Copper in the body
Resumo:
Bioaccumulation of PCDD/F in the foodweb was investigated in the Ya-Er Lake area, which was heavily polluted by PCDD/F. The high concentrations of PCDD/F in sediment can be transferred and bioaccumulated by aquatic organisms and humans through various pathways. Benthonic invertebrate animals and aquatic plants with a lot of fibers in the root can accumulate PCDD/F from sediment and water. Snail (Bellamya aeruginosa), shrimp (Macrobranchium sp.) and freshwater mussel (Acuticosta chinensis (Lea)) took up PCDD/F from the water and maintained the emission patterns, whereas fish tended to selectively accumulate 2,3,7,8-substituted isomers. The tissues of fish-eating bird and duck (Anas platyrhynchos) were very highly contaminated by PCDD/F due to ingestion of fish and other aquatic organisms from sediment. The residual concentration in breast milk depended on the original concentration of PCDD/F in the food. A resident in Ya-Er Lake area showed a daily intake of PCDD/ F of about 9.14 pg TEQ/kg body weight/day. This is higher than the tolerable daily intake (TDI) for PCDD/F (1 pg TEQ/kg body weight/day), which was recommended by the World Health Organization (WHO). (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Feeding ecology of three small fish species, Hypseleotris swinhonis, Ctenogobius giurinus and Pseudorasbora parva was studied seasonally in the Biandantang Lake, a small, shallow lake in central China. Gut length, adjusted for total body length, was significantly higher in spring than in other seasons for all the three species. Seasonal changes in gut length were not associated with changes in food quality. Weight of fore-gut contents, adjusted for body weight, was significantly higher in winter and spring than in summer and autumn in H. swinhonis and C. giurinus, and significantly higher in autumn than in spring and summer for P. parva. Percentage of empty fore-guts was highest in summer and lowest in spring for I-I. swinhonis and C. giurinus, and highest in winter and lowest in autumn for P. parva. Diet of the three small fishes showed apparent seasonal changes, and these changes reflected partly the seasonal fluctuations of food resources in environment. Diet breadth was high in winter and low in autumn for H. swinhonis, high in winter and low in spring and summer for C. giurinus, and high in autumn and low in spring for P. parva. Diet overlaps between pairs of species were biologically significant in most cases, except between H. swinhonis and P. parva in summer and autumn and between C. giurinus and P. parva in autumn. (C) 2000 The Fisheries Society of the British Isles.
Resumo:
The not only lower but also uniform MEMS chip temperatures can he reached by selecting suitable boiling number range that ensures the nucleate boiling heat transfer. In this article, boiling heat transfer experiments in 10 silicon triangular microchannels with the hydraulic diameter of 55.4 mu m were performed using acetone as the working fluid, having the inlet liquid temperatures of 24-40 degrees C, mass fluxes of 96-360 kg/m(2)s, heat fluxes of 140-420 kW/m(2), and exit vapor mass qualities of 0.28-0.70. The above data range correspond to the boiling number from 1.574 x 10(-3) to 3.219 x 10(-3) and ensure the perfect nucleate boiling heat transfer region, providing a very uniform chip temperature distribution in both streamline and transverse directions. The boiling heat transfer coefficients determined by the infrared radiator image system were found to he dependent on the heat Axes only, not dependent on the mass Axes and the vapor mass qualities covering the above data range. The high-speed flow visualization shows that the periodic flow patterns take place inside the microchannel in the time scale of milliseconds, consisting of liquid refilling stage, bubble nucleation, growth and coalescence stage, and transient liquid film evaporation stage in a full cycle. The paired or triplet bubble nucleation sites can occur in the microchannel corners anywhere along the flow direction, accounting for the nucleate boiling heat transfer mode. The periodic boiling process is similar to a series of bubble nucleation, growth, and departure followed by the liquid refilling in a single cavity for the pool boiling situation. The chip temperature difference across the whole two-phase area is found to he small in a couple of degrees, providing a better thermal management scheme for the high heat flux electronic components. Chen's [11 widely accepted correlation for macrochannels and Bao et al.'s [21 correlation obtained in a copper capillary tube with the inside diameter of 1.95 mm using R11 and HCFC123 as working fluids can predict the present experimental data with accepted accuracy. Other correlations fail to predict the correct heat transfer coefficient trends. New heat transfer correlations are also recommended.
Resumo:
We have found that a commonly used complexation and solvent extraction technique (using mixed dithiocarbamates/Freon/HNO3) does not always extract Cd, Co, Cu and Ni from estuarine samples with the same efficiency as from Milli-Q water. For samples collected from the Derwent Estuary (Australia), the reduced extraction efficiency only occurred for unfiltered samples, but low extraction efficiencies were also observed for a (filtered) riverine certified reference material (SLRS-3) suggesting that the effect may be widespread. We have not been able to identify the reason for the low extraction efficiency and, although it is strongly correlated with the presence of high concentrations of suspended solids, dissolved organic matter and particulate iron, we have no experimental evidence to directly link any of these parameters to the effect. It is possible that similar effects may occur in other techniques which rely on a preconcentration step prior to analysis and that some literature values of heavy metals in estuarine waters may be low. We propose a modification of the standard complexation/solvent extraction method which overcomes these difficulties without adding significantly to the time taken for analyses.
Resumo:
NO decomposition reaction was investigated over La2-xThxCuO4, in which the valence of copper was controlled by Th substitution and was characterized by XPS measurement. A close correlation between the valence of copper and the activity was observed. The activity increased with the decrease of the average oxidation number of copper, and increased with the increase of Cu+ content, suggesting that the transition metal with low valence (Cu+) is active for the reaction in the present cases.
Resumo:
Two systems of mixed oxides, La2-xSrxCuO4 +/- lambda (0.0 less than or equal to x less than or equal to 1.0) and La(2-x)Tn(x)CuO(4 +/-) (lambda) (0.0 less than or equal to x less than or equal to 0.4), with K2NiF4 structure were prepared. The average valence of Cu ions and oxygen nonstoichiometry (lambda) were determined by means of chemical analysis. Meanwhile, the adsorption and activation of nitrogen monoxide (NO) and the mixture of NO + CO over the mixed oxide catalysts were studied by means of mass spectrometry temperature-programmed desorption (MS-TPD). The catalytic behaviors in the reactions of direct decomposition of NO and its reduction by CO were investigated, and were discussed in relation with average valence of Cu ions, A and the activation and adsorption of reactant molecules. It has been proposed that both reactions proceed by the redox mechanism, in which the oxygen vacancies and the lower-valent Cu ions play important roles in the individual step of the redox cycle. Oxygen vacancy is more significant for NO decomposition than for NO + CO reaction. For the NO + CO reaction, the stronger implication of the lower-valent Cu ions or oxygen vacancy depends on reaction temperature and the catalytic systems (Sr- or Th-substituted). (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A new method for immobilization of a chemiluminescent reagent is presented. It is based on immobilizing hematin, a catalyst for luminol reaction, in the bulk of a carbon paste electrode. Bulk-immobilization allows renewal of the surface by simple polishing or cutting to expose anew and fully active surface in the case of fouling or deactivation by other means. By using a hematin-modified carbon paste electrode, the applied potential shifted negatively compared with that of unmodified carbon paste electrode or a glassy carbon electrode. The shift in potential changed the reaction processes and effectively stabilized the chemiluminescent signal during successive measurements. Under this condition, the signal was stable during 3 hours of continuous operation. The log-log plots of the emitted light intensity vs. luminol concentration and hydrogen peroxide concentration were linear over the region 10(-8)-10(-3) mol L-1 with a correlation coefficient of 0.999 and 3.9 x 10(-6)-10(-3) mol L-1 with a correlation coefficient of 0.994, respectively. Application of this method for other chemiluminescent and bioluminescent systems is suggested.
Resumo:
The behaviour of the electroplated copper film electrode on tin oxide/glass or glassy carbon surface was studied in potassium hydroxide medium by cyclic voltammetry and in situ transmission spectroelectrochemistry. The results indicate that the electroplated copper film electrode is similar to a copper electrode and cyclic voltammetry with this electrode affords more resolution. The anodic peaks were found to correspond successively to the adsorption of oxygen, the formation of a surface layer of Cu2O, the formation of a surface layer of Cu(OH)2 or CuO and formation of a thick multilayer film of CuO. This is the first time it has been proposed that a surface layer of Cu(OH)2 or CuO is formed from the oxidation of the surface layer of Cu2O. Similarly, a clear interpretation is presented that the cathodic peaks correspond successively to the reduction of CuO to Cu2O, the reductions of Cu2O to Cu and the soluble Cu(II) species to Cu. On the other hand, a shoulder peak related to the chemical transformation of Cu(OH)2 to CuO was first observed.
Resumo:
Aim: To investigate the effect of copper on the virulence of Edwardsiella tarda. Methods and Results: The pathogenic Edw. tarda strain TX5 was cultured under copper-stressed conditions and examined for any potential alteration in capacities that are associated with pathogenicity. The results showed that compared to untreated TX5, Cu-treated TX5 exhibits reduced planktonic and biofilm growth, an impaired ability to adhere to host mucus, modulation of host immune response, and dissemination in host blood and liver. Consistent with these observations, the overall bacterial virulence of Cu-treated TX5 is significantly attenuated. SDS-PAGE analyses of whole cell protein production showed that Cu-treated TX5 differs from the untreated TX5 in its production of at least one protein. Quantitative real time reverse transcriptase PCR analyses showed that copper treatment decreased the expression of virulence-associated genes encoding components of the type III and type VI secretion systems, the Eth haemolysin system, and the LuxS/AI-2 quorum-sensing system. Conclusions: Prolonged exposure to copper has multiple effects on TX5 and results in significant attenuation of bacterial virulence. Significance and Impact of the Study: The results of this study demonstrate that copper treatment has a broad and profound effect on the virulence-associated capacities of TX5, which is exerted at least in part at the transcription level. These findings provide new insights to the antimicrobial mechanism of copper.
Resumo:
The precociously sexual maturation in large yellow crocker Pseudosciaena crocea has become a serious problem. In an attempt to solve this problem, the production of sterile triploids could be an effective strategy. In this study, triploid P. crocea was obtained by subjecting fertilized eggs to pressure shock. Flow-cytometry analysis was used to assess ploidy level. In terms of triploid rate and hatching rate, the optimal conditions of pressure shock for triploidy induction in P. crocea were 7500 psi for 3 min shock at 3 min after fertilization at 20 degrees C. With the application of these parameters, 100% triploid fish were produced. During the first rearing year, triploid P. crocea had a similar growth performance compared with its diploid counterpart before the age of 8 months and showed a significant advantage at the age of 10 and 12 months in body weight and body length (P < 0.05). At the age of 12 months, the carcass weight of triploids was markedly higher than that of diploid control, and gonadal somatic index was significantly lower than that of their diploid control. During the first rearing year, survival in triploid group was 76.44%, inferior to its diploid control (83.21%).
Resumo:
Lancelets (amphioxus), although showing the most similar anatomical features to vertebrates, never develop a vertebrate-like head but rather several structures specific to this animal. The lancelet anatomical specificity seems to be traceable to early developmental stages, such as the vertebrate dorsal and anterior-posterior determinations. The BMP and Wnt proteins play important roles in establishing the early basis of the dorsal structures and the head in vertebrates. The early behavior of BMP and Wnt may be also related to the specific body structures of lancelets. The expression patterns of a dpp-related gene, Bbbmp2/4, and two wnt-related genes, Bbwnt7 and Bbwnt8, have been studied in comparison with those of brachyury and Hnf-3 beta class genes The temporal expression patterns of these genes are similar to those of vertebrates; Bbbmp2/4 and Bbwnt8 are first expressed in the invaginating primitive gut and the equatorial region. respectively, at the initial gastrula stage. However, spatial expression pattern of Bbbmp2/4 differs significantly from the vertebrate cognates. It is expressed in the mid-dorsal inner layer of gastrulae and widely in the anterior region, in which vertebrates block BMP signaling, The present study suggests that the lancelet embryo may have two distinct developmental domains from the gastrula stage, the domains of which coincide later with the lateral diverticular and the somitocoelomic regions. The embryonic origin of the anterior-specific structures in lancelets corresponds to the anterior domain where Bbbmp2/4 is continuously expressed.
Resumo:
The present paper deals with the distribution patterns of heavy metals and the associated influencing factors in the Yalu River Estuary and its adjacent coastal waters. Based upon the analysis of the surficial and core sediments measurements, the pollution of heavy metal and potential ecological risk were evaluated. The burial flux and contents of heavy metals (except for copper) have been continuously increasing since the 1920s. Therefore, the gross potential ecological risk for the sediments was high or very high, and the study area was endangered by heavy metals contamination. Heavy metals originated mainly from upstream pollutant input, correlation analysis showed that chromium, nickel, zinc, cadmium, lead, arsenic, and mercury in the sediments of the middle and west channels as well as the sea area of the western Yalu River Estuary concentrations were most probably derived from similar sources. In contrast, the metal of copper most probably originated from sources different from the other metals. Preliminary studies indicate that copper contamination was most likely the result of emission from mining activities situated at the upstream of the river. The contents of heavy metals in the sediments of estuarine turbidity maximum zone of Yalu River were larger than those of any other areas in the middle channel. With large portion of fine sediments, weaker hydrodynamics, and richer sources of heavy metals, the sediments of the west channel, were even more enriched with heavy metals than those of the middle channel.
Resumo:
To reconstruct the formation and evolution process of the warm current system within the East China Sea (ECS) and the Yellow Sea (YS) since the last deglaciation, the paleoceangraphic records in core DGKS9603, core CSH1 and core YSDP102, which were retrieved from the mainstream of the Kuroshio Current (KC), the edge of the modern Tsushima Warm Current (TWC) and muddy region under cold waters accreted with the Yellow Sea Warm Current (YSWC) respectively, were synthetically analyzed. The results indicate that the formation and evolution of the modern warm current system in the ECS and the YS has been accompanied by the development of the KC and impulse rising of the sea level since the last deglaciation. The influence of the KC on the Okinawa Trough had enhanced since 16 cal kyr BP, and synchronously the modern TWC began to develop with the rising of sea level and finally formed at about 8.5 cal kyr BP. The KC had experienced two weakening process during the Heinrich event 1 and the Younger Drays event from 16 to 8.5 cal kyr BP. The period of 7-6 cal kyr BP was the strongest stage of the KC and the TWC since the last deglaciation. The YSWC has appeared at about 6.4 cal kyr BP. Thus, the warm current system of the ECS and the YS has ultimately formed. The weakness of the KC, indicated by the occurrence of Pulleniatina minimum event (PME) during the period from 5.3 to 2.8 cal kyr BP, caused the main stream of the TWC to shift eastward to the Pacific Ocean around about 3 cal kyr BP. The process resulted in the intruding of continent shelf cold water mass with rich nutrients. Synchronously, the strength of the YSWC was relatively weak and the related cold water body was active at the early-mid stage of its appearance against the PME background, which resulted in the quick formation of muddy deposit system in the southeastern YS. The strength of the warm current system in the ECS and the YS has enhanced evidently, and approached to the modern condition gradually since 3 cal kyr BP.
Resumo:
Resting cysts of the marine phytoplanktonic dinoflagellate Scrippsiella spp. are encountered in coastal habitats and shallow seas all over the world. Identification of Scrippsiella species requires information on cyst morphology because the plate pattern of the flagellated cell is conserved. Cysts from sediments of the East China Sea were identified based on traits from both the cysts and the thecal patterns of germinated cells. Calcareous cysts belonged predominantly to S. trochoidea (F. Stein) A. R. Loebl., S. rotunda J. Lewis, and S. precaria Montresor et Zingone. The former two species also produced smooth and noncalcified cysts in the field. A new species, S. donghaienis H. Gu sp. nov, was obtained from six noncalcified cysts with organic spines. These cysts are spherical, full of pale white and greenish granules with a mesoepicystal archeopyle. The vegetative cells consist of a conical epitheca and a round hypotheca with a plate formula of po, x, 4', 3a, 7 '', 6c (5c + t), 6 s, 5''', 2'''' and are morphologically indistinguishable from S. trochoidea. Results of internal transcribed spacer (ITS) sequence comparisons revealed that S. donghaienis was distinct from the S. trochoidea complex and appeared nested within the Calciodinellum/Calcigonellum clade. Culture experiments showed that the presence of a red body in the cyst and the shape of the archeopyle were constant within cell lines from one generation to the next, while the morphological features of the cyst wall, such as calcification and spine shape, appeared to be phenotypically plastic.
Resumo:
Ecological and physiological features of the planktonic copepod Calanus sinicus in the southern Yellow Sea in summer were studied to reveal its life history strategy. From the coastal shallow waters to the central part of the southern Yellow Sea, a shift of the stage composition occurs from being dominated by the egg-nauplius stage to being dominated by the fifth copepodite (CV) stage. Most CVs reside in the Yellow Sea Cold Water Mass (YSCWM), where both temperature and food abundance are low. CVs in the YSCWM have longer body lengths, heavier body weights and higher carbon contents than those outside the YSCWM. Onboard incubations show that the development of CVs in the YSCWM is suspended. Energy conservation, development suspension and lack of diel vertical migration (DVM) behavior suggest a diapause status for the CVs in the YSCWM, although vertical distribution patterns indicate the CV individuals are not fully synchronous in physiology and development. This adaptive oversummering strategy would help C. sinicus to live through the warm and food-limited summer in the central part of the southern Yellow Sea; both low temperature and low food supply are necessary for CV to maintain the resting state in the YSCWM. Calanus sinicus exhibits different life history strategies in different regions of the southern Yellow Sea in summer.