981 resultados para Computational algorithm
Resumo:
Peer-reviewed
Resumo:
Classical Monte Carlo simulations were carried out on the NPT ensemble at 25°C and 1 atm, aiming to investigate the ability of the TIP4P water model [Jorgensen, Chandrasekhar, Madura, Impey and Klein; J. Chem. Phys., 79 (1983) 926] to reproduce the newest structural picture of liquid water. The results were compared with recent neutron diffraction data [Soper; Bruni and Ricci; J. Chem. Phys., 106 (1997) 247]. The influence of the computational conditions on the thermodynamic and structural results obtained with this model was also analyzed. The findings were compared with the original ones from Jorgensen et al [above-cited reference plus Mol. Phys., 56 (1985) 1381]. It is notice that the thermodynamic results are dependent on the boundary conditions used, whereas the usual radial distribution functions g(O/O(r)) and g(O/H(r)) do not depend on them.
Resumo:
This paper proposes a pose-based algorithm to solve the full SLAM problem for an autonomous underwater vehicle (AUV), navigating in an unknown and possibly unstructured environment. The technique incorporate probabilistic scan matching with range scans gathered from a mechanical scanning imaging sonar (MSIS) and the robot dead-reckoning displacements estimated from a Doppler velocity log (DVL) and a motion reference unit (MRU). The proposed method utilizes two extended Kalman filters (EKF). The first, estimates the local path travelled by the robot while grabbing the scan as well as its uncertainty and provides position estimates for correcting the distortions that the vehicle motion produces in the acoustic images. The second is an augment state EKF that estimates and keeps the registered scans poses. The raw data from the sensors are processed and fused in-line. No priory structural information or initial pose are considered. The algorithm has been tested on an AUV guided along a 600 m path within a marina environment, showing the viability of the proposed approach
Resumo:
Image segmentation of natural scenes constitutes a major problem in machine vision. This paper presents a new proposal for the image segmentation problem which has been based on the integration of edge and region information. This approach begins by detecting the main contours of the scene which are later used to guide a concurrent set of growing processes. A previous analysis of the seed pixels permits adjustment of the homogeneity criterion to the region's characteristics during the growing process. Since the high variability of regions representing outdoor scenes makes the classical homogeneity criteria useless, a new homogeneity criterion based on clustering analysis and convex hull construction is proposed. Experimental results have proven the reliability of the proposed approach
Resumo:
Simultaneous localization and mapping(SLAM) is a very important problem in mobile robotics. Many solutions have been proposed by different scientists during the last two decades, nevertheless few studies have considered the use of multiple sensors simultane¬ously. The solution is on combining several data sources with the aid of an Extended Kalman Filter (EKF). Two approaches are proposed. The first one is to use the ordinary EKF SLAM algorithm for each data source separately in parallel and then at the end of each step, fuse the results into one solution. Another proposed approach is the use of multiple data sources simultaneously in a single filter. The comparison of the computational com¬plexity of the two methods is also presented. The first method is almost four times faster than the second one.
Resumo:
We introduce a global optimization method based on the cooperation between an Artificial Neural Net (ANN) and Genetic Algorithm (GA). We have used ANN to select the initial population for the GA. We have tested the new method to predict the ground-state geometry of silicon clusters. We have described the clusters as a piling of plane structures. We have trained three ANN architectures and compared their results with those of pure GA. ANN strongly reduces the total computational time. For Si10, it gained a factor of 5 in search speed. This method can be easily extended to other optimization problems.
Resumo:
Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback. In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.
Resumo:
We adapt the Shout and Act algorithm to Digital Objects Preservation where agents explore file systems looking for digital objects to be preserved (victims). When they find something they “shout” so that agent mates can hear it. The louder the shout, the urgent or most important the finding is. Louder shouts can also refer to closeness. We perform several experiments to show that this system works very scalably, showing that heterogeneous teams of agents outperform homogeneous ones over a wide range of tasks complexity. The target at-risk documents are MS Office documents (including an RTF file) with Excel content or in Excel format. Thus, an interesting conclusion from the experiments is that fewer heterogeneous (varying skills) agents can equal the performance of many homogeneous (combined super-skilled) agents, implying significant performance increases with lower overall cost growth. Our results impact the design of Digital Objects Preservation teams: a properly designed combination of heterogeneous teams is cheaper and more scalable when confronted with uncertain maps of digital objects that need to be preserved. A cost pyramid is proposed for engineers to use for modeling the most effective agent combinations
Resumo:
As wireless communications evolve towards heterogeneousnetworks, mobile terminals have been enabled tohandover seamlessly from one network to another. At the sametime, the continuous increase in the terminal power consumptionhas resulted in an ever-decreasing battery lifetime. To that end,the network selection is expected to play a key role on howto minimize the energy consumption, and thus to extend theterminal lifetime. Hitherto, terminals select the network thatprovides the highest received power. However, it has been provedthat this solution does not provide the highest energy efficiency.Thus, this paper proposes an energy efficient vertical handoveralgorithm that selects the most energy efficient network thatminimizes the uplink power consumption. The performance of theproposed algorithm is evaluated through extensive simulationsand it is shown to achieve high energy efficiency gains comparedto the conventional approach.
Resumo:
Multispectral images are becoming more common in the field of remote sensing, computer vision, and industrial applications. Due to the high accuracy of the multispectral information, it can be used as an important quality factor in the inspection of industrial products. Recently, the development on multispectral imaging systems and the computational analysis on the multispectral images have been the focus of a growing interest. In this thesis, three areas of multispectral image analysis are considered. First, a method for analyzing multispectral textured images was developed. The method is based on a spectral cooccurrence matrix, which contains information of the joint distribution of spectral classes in a spectral domain. Next, a procedure for estimating the illumination spectrum of the color images was developed. Proposed method can be used, for example, in color constancy, color correction, and in the content based search from color image databases. Finally, color filters for the optical pattern recognition were designed, and a prototype of a spectral vision system was constructed. The spectral vision system can be used to acquire a low dimensional component image set for the two dimensional spectral image reconstruction. The data obtained by the spectral vision system is small and therefore convenient for storing and transmitting a spectral image.
Resumo:
In this paper we address the problem of extracting representative point samples from polygonal models. The goal of such a sampling algorithm is to find points that are evenly distributed. We propose star-discrepancy as a measure for sampling quality and propose new sampling methods based on global line distributions. We investigate several line generation algorithms including an efficient hardware-based sampling method. Our method contributes to the area of point-based graphics by extracting points that are more evenly distributed than by sampling with current algorithms
Resumo:
Robotic platforms have advanced greatly in terms of their remote sensing capabilities, including obtaining optical information using cameras. Alongside these advances, visual mapping has become a very active research area, which facilitates the mapping of areas inaccessible to humans. This requires the efficient processing of data to increase the final mosaic quality and computational efficiency. In this paper, we propose an efficient image mosaicing algorithm for large area visual mapping in underwater environments using multiple underwater robots. Our method identifies overlapping image pairs in the trajectories carried out by the different robots during the topology estimation process, being this a cornerstone for efficiently mapping large areas of the seafloor. We present comparative results based on challenging real underwater datasets, which simulated multi-robot mapping
Resumo:
In the paper machine, it is not a desired feature for the boundary layer flows in the fabric and the roll surfaces to travel into the closing nips, creating overpressure. In this thesis, the aerodynamic behavior of the grooved roll and smooth rolls is compared in order to understand the nip flow phenomena, which is the main reason why vacuum and grooved roll constructions are designed. A common method to remove the boundary layer flow from the closing nip is to use the vacuum roll construction. The downside of the use of vacuum rolls is high operational costs due to pressure losses in the vacuum roll shell. The deep grooved roll has the same goal, to create a pressure difference over the paper web and keep the paper attached to the roll or fabric surface in the drying pocket of the paper machine. A literature review revealed that the aerodynamic functionality of the grooved roll is not very well known. In this thesis, the aerodynamic functionality of the grooved roll in interaction with a permeable or impermeable wall is studied by varying the groove properties. Computational fluid dynamics simulations are utilized as the research tool. The simulations have been performed with commercial fluid dynamics software, ANSYS Fluent. Simulation results made with 3- and 2-dimensional fluid dynamics models are compared to laboratory scale measurements. The measurements have been made with a grooved roll simulator designed for the research. The variables in the comparison are the paper or fabric wrap angle, surface velocities, groove geometry and wall permeability. Present-day computational and modeling resources limit grooved roll fluid dynamics simulations in the paper machine scale. Based on the analysis of the aerodynamic functionality of the grooved roll, a grooved roll simulation tool is proposed. The smooth roll simulations show that the closing nip pressure does not depend on the length of boundary layer development. The surface velocity increase affects the pressure distribution in the closing and opening nips. The 3D grooved roll model reveals the aerodynamic functionality of the grooved roll. With the optimal groove size it is possible to avoid closing nip overpressure and keep the web attached to the fabric surface in the area of the wrap angle. The groove flow friction and minor losses play a different role when the wrap angle is changed. The proposed 2D grooved roll simulation tool is able to replicate the grooved aerodynamic behavior with reasonable accuracy. A small wrap angle predicts the pressure distribution correctly with the chosen approach for calculating the groove friction losses. With a large wrap angle, the groove friction loss shows too large pressure gradients, and the way of calculating the air flow friction losses in the groove has to be reconsidered. The aerodynamic functionality of the grooved roll is based on minor and viscous losses in the closing and opening nips as well as in the grooves. The proposed 2D grooved roll model is a simplification in order to reduce computational and modeling efforts. The simulation tool makes it possible to simulate complex paper machine constructions in the paper machine scale. In order to use the grooved roll as a replacement for the vacuum roll, the grooved roll properties have to be considered on the basis of the web handling application.
Resumo:
Stratospheric ozone can be measured accurately using a limb scatter remote sensing technique at the UV-visible spectral region of solar light. The advantages of this technique includes a good vertical resolution and a good daytime coverage of the measurements. In addition to ozone, UV-visible limb scatter measurements contain information about NO2, NO3, OClO, BrO and aerosols. There are currently several satellite instruments continuously scanning the atmosphere and measuring the UVvisible region of the spectrum, e.g., the Optical Spectrograph and Infrared Imager System (OSIRIS) launched on the Odin satellite in February 2001, and the Scanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY (SCIAMACHY) launched on Envisat in March 2002. Envisat also carries the Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument, which also measures limb-scattered sunlight under bright limb occultation conditions. These conditions occur during daytime occultation measurements. The global coverage of the satellite measurements is far better than any other ozone measurement technique, but still the measurements are sparse in the spatial domain. Measurements are also repeated relatively rarely over a certain area, and the composition of the Earth’s atmosphere changes dynamically. Assimilation methods are therefore needed in order to combine the information of the measurements with the atmospheric model. In recent years, the focus of assimilation algorithm research has turned towards filtering methods. The traditional Extended Kalman filter (EKF) method takes into account not only the uncertainty of the measurements, but also the uncertainty of the evolution model of the system. However, the computational cost of full blown EKF increases rapidly as the number of the model parameters increases. Therefore the EKF method cannot be applied directly to the stratospheric ozone assimilation problem. The work in this thesis is devoted to the development of inversion methods for satellite instruments and the development of assimilation methods used with atmospheric models.
Resumo:
In wireless communications the transmitted signals may be affected by noise. The receiver must decode the received message, which can be mathematically modelled as a search for the closest lattice point to a given vector. This problem is known to be NP-hard in general, but for communications applications there exist algorithms that, for a certain range of system parameters, offer polynomial expected complexity. The purpose of the thesis is to study the sphere decoding algorithm introduced in the article On Maximum-Likelihood Detection and the Search for the Closest Lattice Point, which was published by M.O. Damen, H. El Gamal and G. Caire in 2003. We concentrate especially on its computational complexity when used in space–time coding. Computer simulations are used to study how different system parameters affect the computational complexity of the algorithm. The aim is to find ways to improve the algorithm from the complexity point of view. The main contribution of the thesis is the construction of two new modifications to the sphere decoding algorithm, which are shown to perform faster than the original algorithm within a range of system parameters.