879 resultados para Companies Size and Activity Sector
Resumo:
"2000-2001."
Resumo:
The duration of movements made to intercept moving targets decreases and movement speed increases when interception requires greater temporal precision. Changes in target size and target speed can have the same effect on required temporal precision, but the response to these changes differs: changes in target speed elicit larger changes in response speed. A possible explanation is that people attempt to strike the target in a central zone that does not vary much with variation in physical target size: the effective size of the target is relatively constant over changes in physical size. Three experiments are reported that test this idea. Participants performed two tasks: (1) strike a moving target with a bat moved perpendicular to the path of the target; (2) press on a force transducer when the target was in a location where it could be struck by the bat. Target speed was varied and target size held constant in experiment 1. Target speed and size were co-varied in experiment 2, keeping the required temporal precision constant. Target size was varied and target speed held constant in experiment 3 to give the same temporal precision as experiment 1. Duration of hitting movements decreased and maximum movement speed increased with increases in target speed and/or temporal precision requirements in all experiments. The effects were largest in experiment 1 and smallest in experiment 3. Analysis of a measure of effective target size (standard deviation of strike locations on the target) failed to support the hypothesis that performance differences could be explained in terms of effective size rather than actual physical size. In the pressing task, participants produced greater peak forces and shorter force pulses when the temporal precision required was greater, showing that the response to increasing temporal precision generalizes to different responses. It is concluded that target size and target speed have independent effects on performance.
Resumo:
The efficiency of physical separation of inclusion bodies from cell debris is related to cell debris size and inclusion body release and both factors should be taken into account when designing a process. In this work, cell disruption by enzymatic treatment with lysozyme and cellulase, by homogenization, and by homogenization with ammonia pretreatment is discussed. These disruption methods are compared on the basis of inclusion body release, operating costs, and cell debris particle size. The latter was measured with cumulative sedimentation analysis in combination with membrane-associated protein quantification by SDS-PAGE and a spectrophotometric pepticloglycan quantification method. Comparison of the results obtained with these two cell debris quantification methods shows that enzymatic treatment yields cell debris particles with varying chemical composition, while this is not the case with the other disruption methods that were investigated. Furthermore, the experiments show that ammonia pretreatment with homogenization increases inclusion body release compared to homogenization without pretreatment and that this pretreatment may be used to control the cell debris size to some extent. The enzymatic disruption process gives a higher product release than homogenization with or without ammonia pretreatment at lower operating costs, but it also yields a much smaller cell debris size than the other disruption process. This is unfavorable for centrifugal inclusion body purification in this case, where cell debris is the component going to the sediment and the inclusion body is the floating component. Nevertheless, calculations show that centrifugal separation of inclusion bodies from the enzymatically treated cells gives a high inclusion body yield and purity. (C) 2004 Wiley Periodicals, Inc.
Canopy size and induced resistance in Stylosanthes scabra determine anthracnose severity at high CO2
Resumo:
This study aimed to identify potential factors responsible for geographically structured morphological variation within the widespread Australian frogs Limnodynastes tasmaniensis Gunther and L. peronii Dumeril & Bibron. There was support for James's rule, and both latitude and present climate explained large amounts of the variation in body size and shape (particularly in L. peronii). There was also some support for the influence of several biogeographical barriers. Finally, both species were sexually dimorphic for body size and the degree of sexual size dimorphism (SSD) varied geographically. Climate was an important explanation for SSD variation in L. peronii, while latitude was most important for L. tasmaniensis. Geographical variations in sexual selection via male-male physical competition and climate-related resources are suggested as potential explanations for SSD variation in L. peronii. (C) 2004 The Linnean Society of London.
Resumo:
The present study adds to the sparse published Australian literature on the size effect, the book to market (BM) effect and the ability of the Fama French three factor model to account for these effects and to improve on the asset pricing ability of the Capital Asset Pricing Model (CAPM). The present study extends the 1981–1991 period examined by Halliwell, Heaney and Sawicki (1999) a further 10 years to 2000 and addresses several limitations and findings of that research. In contrast to Halliwell, Heaney and Sawicki the current study finds the three factor model provides significantly improved explanatory power over the CAPM, and evidence that the BM factor plays a role in asset pricing.
Resumo:
Modulation of the cytochrome P450 (CYP) monooxygenase system by cadmium was investigated in male, adult DBA/2J mice treated with a single dose (16 mumol/kg body weight, i.p.) of cadmium chloride (CdCl2). Total CYP content of liver and kidney microsomes decreased maximally (56% and 85%, respectively) 24 and 18 h, respectively, after CdCl2 treatment. Progressive increases of hepatic coumarin 7-hydroxylase (COH) activity; indicative of CYP2A5 activity, relative to the total CYP content were seen at 8 h (2-fold), 12 h (3-fold), 18 h (12-fold), and 24 h (15-fold). Similar changes were seen in the kidney. Liver and kidney CYP2A5 mRNA levels increased maximally 12 and 4 h after treatment and decreased to almost half 6 h later. In contrast, kidney and liver CYP2A5 protein levels increased maximally at 18 and 24 h. The CYP2A5 mRNA levels in the kidney and liver increased after Cd treatment in Nrf2 +/+ but not in Nrf2 -/- mouse. This study demonstrates that hepatic and kidney CYP2A5 is upregulated by cadmium with a somewhat faster response in the kidney than the liver. The strong upregulation of the CYP2A5 both at mRNA and enzyme activity levels, with a simultaneous decrease in the total CYP concentration suggest an unusual mode of regulation of CYP2A5 in response to cadmium exposure, amongst the CYP enzymes. The observed decrease in the mRNA but not in protein levels after maximal induction may suggest involvement of post-trancriptional mechanisms in the regulation. Upregulation of CYP2A5 by cadmium in the Nrf2 +/+ mice but not in the Nrf2 -/- mice indicates a role for this transcription factor in the regulation. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Third sector organizations are transitioning towards entrepreneurial and managerial models as a result of quasi-market strategies. This paper reports on the research findings of a survey of nonprofit disability organizations in Queensland and Victoria impacted upon by quasi-market reform. Enterprising organizations were found to have made substantial change to organizational structures and systems, whilst more traditional organizations made few changes. All organizations demonstrated commitment to a social justice ethos. However across the organizational archetypes there were reports of an organizational 'fragility'. It is argued that the problems of sustainability of community service organizations that existed prior to quasi-market reforms remain. This implies community service organizations will experience ongoing difficulties in the post-market era without further rationalization and change. A conceptual framework for sustainability of the community service sector is presented at the policy and organizational level.
Resumo:
Human C5a is a plasma protein with potent chemoattractant and pro-inflammatory properties, and its overexpression correlates with severity of inflammatory diseases. C5a binds to its G protein-coupled receptor (C5aR) on polymorphonuclear leukocytes (PMNLs) through a high-affinity helical bundle and a low-affinity C terminus, the latter being solely responsible for receptor activation. Potent and selective C5a antagonists are predicted to be effective anti-inflammatory drugs, but no pharmacophore for small molecule antagonists has yet been developed, and it would significantly aid drug design. We have hypothesized that a turn conformation is important for activity of the C terminus of C5a and herein report small cyclic peptides that are stable turn mimics with potent antagonism at C5aR on human PMNLs. A comparison of solution structures for the C terminus of C5a, small acyclic peptide ligands, and cyclic antagonists supports the importance of a turn for receptor binding. Competition between a cyclic antagonist and either C5a or an acyclic agonist for C5aR on PMNLs supports a common or overlapping binding site on the C5aR. Structure-activity relationships for 60 cyclic analogs were evaluated by competitive radioligand binding with C5a (affinity) and myeloperoxidase release (antagonist potency) from human PMNLs, with 20 compounds having high antagonist potencies (IC50, 20 nM(-1) muM). Computer modeling comparisons reveal that potent antagonists share a common cyclic backbone shape, with affinity-determining side chains of defined volume projecting from the cyclic scaffold. These results define a new pharmacophore for C5a antagonist development and advance our understanding of ligand recognition and receptor activation of this G protein-coupled receptor.
Resumo:
Lines of transgenic tobacco have been generated that are transformed with either the wild-type peanut peroxidase prxPNC2 cDNA, driven by the CaMV3 5S promoter (designated 35S::prxPNC2-WT) or a mutated PNC2 cDNA in which the asparagine residue (Asn(189)) associated with the point of glycan attachment (Asn(189)) has been replaced with alanine (designated 35S::prxPNC2-M). PCR, using genomic DNA as template, has confirmed the integration of the 35S::prxPNC2-WT and 35::prxPNC2-M constructs into the tobacco genome, and western analysis using anti-PNC2 antibodies has revealed that the prxPNC2-WT protein product (PNC2-WT) accumulates with a molecular mass of 34,670 Da, while the prxPNC2-M protein product (PNC2-M) accumulates with a molecular mass of 32,600 Da. Activity assays have shown that both PNC2-WT and PNC2-M proteins accumulate preferentially in the ionically-bound cell wall fraction, with a significantly higher relative accumulation of the PNC2-WT isoenzyme in the ionically-bound fraction when compared with the PNC2-M isoform. Kinetic analysis of the partially purified PNC2-WT isozyme revealed an affinity constant (apparent K-m) of 11.2 mM for the reductor substrate guaiacol and 1.29 mM for H2O2, while values of 11.9 mM and 1.12 mM were determined for the PNC2-M isozyme. A higher Arrenhius activation energy (E,,) was determined for the PNC2-M isozyme (22.9 kJ mol(-1)), when compared with the PNC2-WT isozyme (17.6 kJ mol(-1)), and enzyme assays have determined that the absence of the glycan influences the thermostability of the PNC2-M isozyme. These results are discussed with respect to the proposed roles of N-linked glycans attached to plant peroxidases. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This study compares process data with microscopic observations from an anaerobic digestion of organic particles. As the first part of the study, this article presents detailed observations of microbial biofilm architecture and structure in a 1.25-L batch digester where all particles are of an equal age. Microcrystalline cellulose was used as the sole carbon and energy source. The digestions were inoculated with either leachate from a 220-Lanaerobic municipal solid waste digester or strained rumen contents from a fistulated cow. The hydrolysis rate, when normalized by the amount of cellulose remaining in the reactor, was found to reach a constant value 1 day after inoculation with rumen fluid, and 3 days after inoculating with digester leachate. A constant value of a mass specific hydrolysis rate is argued to represent full colonization of the cellulose surface and first-order kinetics only apply after this point. Additionally, the first-order hydrolysis rate constant, once surfaces were saturated with biofilm, was found to be two times higher with a rumen inoculum, compared to a digester leachate inoculum. Images generated by fluorescence in situ hybridization (FISH) probing and confocal laser scanning microscopy show that the microbial communities involved in the anaerobic biodegradation process exist entirely within the biofilm. For the reactor conditions used in these experiments, the predominant methanogens exist in ball-shaped colonies within the biofilm. (C) 2005 Wiley Periodicals, Inc.
Resumo:
Pre-settlement events play an important role in determining larval success in marine invertebrates with bentho-pelagic life histories, yet the consequences of these events typically are not well understood. The purpose of this study was to examine the pre-settlement impacts of different seawater temperatures on the size and population density of dinoflagellate symbionts in brooded larvae of the Caribbean coral Porites astreoides. Larvae were collected from P. astreoides at 14-20 m depth on Conch Reef (Florida) in June 2002, and incubated for 24 h at 15 temperatures spanning the range 25.1 degrees-30.0 degrees C in mean increments of 0.4 +/- 0.1 degrees C (+/- SD). The most striking feature of the larval responses was the magnitude of change in both parameters across this 5 degrees C temperature range within 24 h. In general, larvae were largest and had the highest population densities of Symbiodinium sp. between 26.4 degrees-27.7 degrees C, and were smallest and had the lowest population densities at 25.8 degrees C and 28.8 degrees C. Larval size and symbiont population density were elevated slightly (relative to the minimal values) at the temperature extremes of 25.1 degrees C and 30 degrees C. These data demonstrate that coral larvae are highly sensitive to seawater temperature during their pelagic phase, and respond through changes in size and the population densities of Symbiodinium sp. to ecologically relevant temperature signals within 24 h. The extent to which these changes are biologically meaningful will depend on the duration and frequency of exposure of coral larvae to spatio-temporal variability in seawater temperature, and whether the responses have cascading effects on larval success and their entry to the post-settlement and recruitment phase.
Resumo:
The three human SULT1A sulfotransferase enzymes are closely related in amino acid sequence (>90%), yet differ in their substrate preference and tissue distribution. SULT1A1 has a broad tissue distribution and metabolizes a range of xenobiotics as well as endogenous substrates such as estrogens and iodothyronines. While the localization of SULT1A2 is poorly understood, it has been shown to metabolize a number of aromatic amines. SULT1A3 is the major catecholamine sulfonating form, which is consistent with it being expressed principally in the gastrointestinal tract. SULT1A proteins are encoded by three separate genes, located in close proximity to each other on chromosome 16. The presence of differential 5′-untranslated regions identified upon cloning of the SULT1A cDNAs suggested the utilization of differential transcriptional start sites and/or differential splicing. This chapter describes the methods utilized by our laboratory to clone and assay the activity of the promoters flanking these different untranslated regions found on SULT1A genes. These techniques will assist investigators in further elucidating the differential mechanisms that control regulation of the human SULT1A genes. They will also help reveal how different cellular environments and polymorphisms affect the activity of SULT1A gene promoters.
Resumo:
Recently it has been shown that modification with strontium causes an increase in the size of eutectic grains. The eutectic grain size increases because there are fewer nucleation events, possibly due to the poisoning of phosphorus-based nuclei that are active in the unmodified alloy. The current paper investigates the effect of strontium concentration on the eutectic grain size. In the aluminium-10 wt.% silicon alloy used in this research, for fixed casting conditions, the eutectic grain size increases as the strontium concentration increases up to approximately 150ppm, beyond which the grain size is relatively stable. This critical strontium concentration is likely to differ depending on the composition of the base alloy, including the concentration of minor elements and impurities. It is concluded that processing and in-service properties of strontium modified aluminium-silicon castings are likely to be more stable if a minimum critical strontium concentration is exceeded. If operating below this critical strontium concentration exceptional control over composition and casting conditions is required. (c) 2005 Elsevier B.V. All rights reserved.