907 resultados para Color of food
Resumo:
Tomato ( Lycopersicon esculentum Mill) is the leading vegetable in terms of production in Kenya. The Kenyan local market has a wide variety of tomato cultivars with a wide range of morphological and sensorial characteristics. However, information on the nutritional and postharvest quality of these varieties is lacking. The aim of this research was to investigate and identify tomato varieties of superior postharvest quality and recommend them to small and medium scale farmers. In this study, six tomato varieties were grown in a greenhouse and analyzed at three maturity stages (mature green, turning and red ripe). The tomatoes were analyzed at specific days after harvest and storage at room temperature (25o C). Percentage weight loss, color, respiration and ethylene production rates were analyzed to assess the postharvest quality of the tomatoes. The color was measured using a Minolta Chromameter while the respiration rate and ethylene production rates were determined using the static system approach. Color, weight loss, respiration and ethylene production rates were positively affected by storage time when harvested at the three maturity stages. The percentage weight loss of the tomato fruits was higher in the determinate varieties, and at the turning stage of maturity (3.8 %). Minor color changes were observed after storage of the tomatoes harvested at red stage for six days. Both rates of respiration and ethylene production were low, with the respiration rate ranging between 56-10 ml CO2 Kg-1h-1. The Chonto F1 variety had the highest rate of ethylene production (5.4 μL C2H4 Kg-1h-1) on the 4th day of storage after harvest at the red ripe stage. Overall, the indeterminate tomato varieties displayed better postharvest quality that can prolong the fruits shelf life for marketing. In turn, the turning stage of maturity proved to be a better stage to harvest tomatoes as the color development was more uniform.
Resumo:
Phenotypic variation in plants can be evaluated by morphological characterization using visual attributes. Fruits have been the major descriptors for identification of different varieties of fruit crops. However, even in their absence, farmers, breeders and interested stakeholders require to distinguish between different mango varieties. This study aimed at determining diversity in mango germplasm from the Upper Athi River (UAR) and providing useful alternative descriptors for the identification of different mango varieties in the absence of fruits. A total of 20 International Plant Genetic Resources Institute (IPGRI) descriptors for mango were selected for use in the visual assessment of 98 mango accessions from 15 sites of the UAR region of eastern Kenya. Purposive sampling was used to identify farmers growing diverse varieties of mangoes. Evaluation of the descriptors was performed on-site and the data collected were then subjected to multivariate analysis including Principal Component Analysis (PCA) and Cluster analysis, one- way analysis of variance (ANOVA) and Chi square tests. Results classified the accessions into two major groups corresponding to indigenous and exotic varieties. The PCA showed the first six principal components accounting for 75.12% of the total variance. A strong and highly significant correlation was observed between the color of fully grown leaves, leaf blade width, leaf blade length and petiole length and also between the leaf attitude, color of young leaf, stem circumference, tree height, leaf margin, growth habit and fragrance. Useful descriptors for morphological evaluation were 14 out of the selected 20; however, ANOVA and Chi square test revealed that diversity in the accessions was majorly as a result of variations in color of young leaves, leaf attitude, leaf texture, growth habit, leaf blade length, leaf blade width and petiole length traits. These results reveal that mango germplasm in the UAR has significant diversity and that other morphological traits apart from fruits can be useful in morphological characterization of mango.
Resumo:
Although mitigating GHG emissions is necessary to reduce the overall negative climate change impacts on crop yields and agricultural production, certain mitigation measures may generate unintended consequences to food availability and access due to land use competition and economic burden of mitigation. Prior studies have examined the co-impacts on food availability and global producer prices caused by alternative climate policies. More recent studies have looked at the reduction in total caloric intake driven by both changing income and changing food prices under one specific climate policy. However, due to inelastic calorie demand, consumers’ well-being are likely further reduced by increased food expenditures. Built upon existing literature, my dissertation explores how alternative climate policy designs might adversely affect both caloric intake and staple food budget share to 2050, by using the Global Change Assessment Model (GCAM) and a post-estimated metric of food availability and access (FAA). My dissertation first develop a set of new metrics and methods to explore new perspectives of food availability and access under new conditions. The FAA metric consists of two components, the fraction of GDP per capita spent on five categories of staple food and total caloric intake relative to a reference level. By testing the metric against alternate expectations of the future, it shows consistent results with previous studies that economic growth dominates the improvement of FAA. As we increase our ambition to achieve stringent climate targets, two policy conditions tend to have large impacts on FAA driven by competing land use and increasing food prices. Strict conservation policies leave the competition between bioenergy and agriculture production on existing commercial land, while pricing terrestrial carbon encourages large-scale afforestation. To avoid unintended outcomes to food availability and access for the poor, pricing land emissions in frontier forests has the advantage of selecting more productive land for agricultural activities compared to the full conservation approach, but the land carbon price should not be linked to the price of energy system emissions. These results are highly relevant to effective policy-making to reduce land use change emissions, such as the Reduced Emissions from Deforestation and Forest Degradation (REDD).
Resumo:
Freeze drying technology can give good quality attributes of vegetables and fruits in terms of color, nutrition, volume, rehydration kinetics, stability during storage, among others, when compared with solely air dried ones. However, published scientific works showed that treatments applied before and after air dehydration are effective in food attributes, improving its quality. Therefore, the hypothesis of the present thesis was focus in a vast research of scientific work that showed the possibility to apply a pre-treatment and a post-treatment to food products combined with conventional air drying aiming being close, or even better, to the quality that a freeze dried product can give. Such attributes are the enzymatic inactivation, stability during storage, drying and rehydration kinetics, color, nutrition, volume and texture/structure. With regard to pre-treatments, the ones studied along the present work were: water blanching, steam blanching, ultrasound, freezing, high pressure and osmotic dehydration. High electric pulsed field was also studied but the food attributes were not explained on detailed. Basically, water and steam blanching showed to be adequate to inactivate enzymes in order to prevent enzymatic browning and preserve the product quality during long storage periods. With regard to ultrasound pre-treatment the published results pointed that ultrasound is an effective pre-treatment to reduce further drying times, improve rehydration kinetics and color retention. On the other hand, studies showed that ultrasound allow sugars losses and, in some cases, can lead to cell disruption. For freezing pre-treatment an overall conclusion was difficult to draw for some food attributes, since, each fruit or vegetable is unique and freezing comprises a lot of variables. However, for the studied cases, freezing showed to be a pre-treatment able to enhance rehydration kinetics and color attributes. High pressure pre-treatment showed to inactivate enzymes improving storage stability of food and showed to have a positive performance in terms of rehydration. For other attributes, when high pressure technology was applied, the literature showed divergent results according with the crops used. Finally, osmotic dehydration has been widely used in food processing to incorporate a desired salt or sugar present in aqueous solution into the cellular structure of food matrix (improvement of nutrition attribute). Moreover, osmotic dehydration lead to shorter drying times and the impregnation of solutes during osmose allow cellular strengthens of food. In case of post-treatments, puffing and a new technology denominated as instant controlled pressure drop (DIC) were reported in the literature as treatments able to improve diverse Abstract Effect of Pre-treatments and Post-treatments on Drying Products x food attributes. Basically, both technologies are similar where the product is submitted to a high pressure step and the process can make use of different heating mediums such as CO2, steam, air and N2. However, there exist a significant difference related with the final stage of both which can comprise the quality of the final product. On the other hand, puffing and DIC are used to expand cellular tissues improving the volume of food samples, helping in rehydration kinetics as posterior procedure, among others. The effectiveness of such pre and/or post-treatments is dependent on the state of the vegetables and fruits used which are also dependent of its cellular structure, variety, origin, state (fresh, ripe, raw), harvesting conditions, etc. In conclusion, as it was seen in the open literature, the application of pre-treatments and post-treatments coupled with a conventional air dehydration aim to give dehydrated food products with similar quality of freeze dried ones. Along the present Master thesis the experimental data was removed due to confidential reasons of the company Unilever R&D Vlaardingen
Resumo:
This work investigates the acceptance of different food types and sizes by Macrobrachium rosenbergii during each larval stage. Food intake of dry and wet formulated diets of four different size classes (250-425, 425-710, 710-1000 and 1000-1190 mum), as well as Artemia nauplii, was determined. Larvae of each zoeal stage were stocked in beakers and fed ad libitum. After 30-45 min, the digestive tract of each larva was observed under a stereomicroscope. Acceptance was evaluated by food intake frequency (FFI). There was no significant interaction (P<0.05) between inert diet size and FFI for each larval stage. Therefore, food intake during larval development is independent of food particle size. The ingestion of Artemia nauplii, was significantly higher by larvae between stages II and VI. Between stages VII and XI, FFI for Artemia nauplii and wet diet was similar, while the FFI of the dry diet was similar to live food between stages IX and XI. The wet diet was ingested by more than 50% of the larvae only from stage VII onwards, while the dry diet from stage VIII onwards. These results indicate that larvae could be fed Artemia nauplii only until stage VI. Diet supplementation should start from stage VII onwards, using food particles varying from 250 to 1190 mum. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Prolonged high-intensity training seems to result in increased systemic inflammation, which might explain muscle injury, delayed onset muscle soreness, and overtraining syndrome in athletes. Furthermore, an impaired immune function caused by strenuous exercise leads to the development of upper respiratory tract infections in athletes. Nutraceuticals might help counteract these performance-lowering effects. The use of nanotechnology is an interesting alternative to supply athletes with nutraceuticals, as many of these substances are insoluble in water and are poorly absorbed in the digestive tract. The present chapter starts with a brief review of the effects of exercise on immunity, followed by an analysis on how nutraceuticals such as omega-3 fatty acids, glutamine, BCAAs, or phytochemicals can counteract negative effects of strenuous exercise in athletes. Finally, how nanostructured delivery systems can constitute a new trend in enhancing bioavailability and optimizing the action of nutraceuticals will be discussed, using the example of food beverages.
Resumo:
In this work the effect of pre-treatments on the physical properties of fresh kiwi was studied. For that, a set of tests using chemical pretreatments was used, in which the samples were subjected to aqueous solutions of ascorbic acid and potassium metabisulfite at concentrations of 0.25% and 1% (w/v) for periods of 30 and 60 minutes, in order to understand the implications of the treatments in the color and texture of the kiwi as compared to its original properties. The results showed that the kiwi treated with ascorbic acid changed its color very intensively when compared to the fresh product, and this trend was intensified after storage. Contrarily, when potassium metabisulfite was used, the changes in color were quite negligible right after the treatment and even lower after the storage period of 6 days under refrigeration. After the treatments with both solutions, the kiwi texture was drastically changed, diminishing hardness considerably and increasing elasticity for all treatments. The same could be observed after six days of refrigeration.
Resumo:
The main purpose of this study is to assess the relationship between six bioclimatic indices for cattle (temperature humidity (THI), environmental stress (ESI), equivalent temperature (ESI), heat load (HLI), modified heat load (HLInew) and respiratory rate predictor(RRP)) and fundamental milk components (fat, protein, and milk yield) considering uncertainty. The climate parameters used to calculate the climate indices were taken from the NASA-Modern Era Retrospective-Analysis for Research and Applications (NASA-MERRA) reanalysis from 2002 to 2010. Cow milk data were considered for the same period from April to September when cows use natural pasture, with possibility for cows to choose to stay in the barn or to graze on the pasture in the pasturing system. The study is based on a linear regression analysis using correlations as a summarizing diagnostic. Bootstrapping is used to represent uncertainty estimation through resampling in the confidence intervals. To find the relationships between climate indices (THI, ETI, HLI, HLInew, ESI and RRP) and main components of cow milk (fat, protein and yield), multiple liner regression is applied. The least absolute shrinkage selection operator (LASSO) and the Akaike information criterion (AIC) techniques are applied to select the best model for milk predictands with the smallest number of climate predictors. Cross validation is used to avoid over-fitting. Based on results of investigation the effect of heat stress indices on milk compounds separately, we suggest the use of ESI and RRP in the summer and ESI in the spring. THI and HLInew are suggested for fat content and HLInew also is suggested for protein content in the spring season. The best linear models are found in spring between milk yield as predictands and THI, ESI,HLI, ETI and RRP as predictors with p-value < 0.001 and R2 0.50, 0.49. In summer, milk yield with independent variables of THI, ETI and ESI show the highest relation (p-value < 0.001) with R2 (0.69). For fat and protein the results are only marginal. It is strongly suggested that new and significant indices are needed to control critical heat stress conditions that consider more predictors of the effect of climate variability on animal products, such as sunshine duration, quality of pasture, the number of days of stress (NDS), the color of skin with attention to large black spots, and categorical predictors such as breed, welfare facility, and management system. This methodology is suggested for studies investigating the impacts of climate variability/change on food quality/security, animal science and agriculture using short term data considering uncertainty or data collection is expensive, difficult, or data with gaps.
Resumo:
With the global population projected to reach 9 billion in 2050, demand for food is expected to increase by over 50% in 2030 and 70% in 2050 (UN-Water, 2013). Already agriculture is the largest user of water with irrigation accounting for nearly 70% of all freshwater withdrawals (UN-Water, 2016).
Resumo:
In the rural areas of Brazil, a farmer runs his agricultural empire with a fierce hand: he exploits his workers and the land to their limits. Lack of sustainable land management leads to the pollution of rivers, changes in rain patterns, and exhaustion of the soil.
Resumo:
Spices are known to add taste, flavor, aroma, color to food. These spices also have been the many traditional medicines in India and elsewhere to provide treatment to various diseases. Elettaria cardamomum is one of the spices used in traditional medicines for several diseases. It is used in treating various gastrointestinal, cardiovascular and neuronal disorders. The inhibitory activity of cardamom extract was studied on human platelets has also been reported. This review aims to highlight the ethno botany, pharmacognostic and pharmacological uses of Elettaria cardamomum. This review will also highlight the patenting trends and the new compositions developed using the actives from Elettaria cardamomum.
Resumo:
Persistent food insecurity and famines have continued to significantly shape the development policies of Ethiopia for decades. Over the decades, frequent famines caused not only the death of hundreds of thousands of victims but also significantly contributed to two revolutions that swept away the Haile Selassie and Derg regimes, as well as significantly taxing the legitimacy of the incumbent regime. As a result, agriculture and food security have become increasingly the top policy priorities for all political regimes in Ethiopia. However, the development policies of the ruling elites of Ethiopia have consistently failed to transform backward agriculture and ensure food security. The failures of the development policies of the Ethiopian governments over the years were attributed to several factors. Ethiopian authoritarian politics, centralized rule with a lack of transparency and accountability; the isolation of peasants from the development and governance process, and the lack of coherent agricultural development strategies that invest in peasant agriculture and create synergy among sectors are identified as key issues that have contributed to the persistence of food insecurity in the country. The literature on the failure of Ethiopia's political regimes to address food insecurity and famine has two major gaps that this study aims to fill. First, the cumulative and path-dependent food security and agricultural development policy environment were not adequately considered. Second, the strategy of extraversion by subsequent political regimes to use external support as a relief to prevent the famine-induced political crisis. This study used a mixed approach to collect data and present the evolution of the interplays of development policies and food security in three regimes within the context of international food security discourses. This study found out how the historical patterns of approaches of Ethiopia’s regimes to development and governance led to frequent famines and persistent food insecurity.
Resumo:
This study evaluated the ecotoxicity of five dyes to freshwater organisms before and during their photo-Fenton degradation. EC50 (48h) of the five tested dyes ranged from of 6.9 to >1000mgL(-1) for Daphnia similis. In the chronic tests IC50 (72h) varied from 65 to >100mgL(-1) for Pseudokirchneriella subcapitata and IC50 (8 days) from 0.5 to 410mgL(-1) for Ceriodaphnia dubia. Toxicity tests revealed that although the applied treatment was effective for decolorization of the dye, the partial mineralization may be responsible for the presence of degradation products which can be either more toxic than the original dye, as is the case of Vat Green 3 and Reactive Black 5, lead to initially toxic products which may be further degraded to non toxic products (acid Orange 7 and Food Red 17), or generate non toxic products as in the case of Food Yellow 3. The results highlighted the importance of assessing both acute and chronic toxicity tests of treated sample before effluent discharge.
Resumo:
The aim of this study was to evaluate fat substitute in processing of sausages prepared with surimi of waste from piramutaba filleting. The formulation ingredients were mixed with the fat substitutes added according to a fractional planning 2(4-1), where the independent variables, manioc starch (Ms), hydrogenated soy fat (F), texturized soybean protein (Tsp) and carrageenan (Cg) were evaluated on the responses of pH, texture (Tx), raw batter stability (RBS) and water holding capacity (WHC) of the sausage. Fat substitutes were evaluated in 11 formulations and the results showed that the greatest effects on the responses were found to Ms, F and Cg, being eliminated from the formulation Tsp. To find the best formulation for processing piramutaba sausage was made a complete factorial planning of 2(3) to evaluate the concentrations of fat substitutes in an enlarged range. The optimum condition found for fat substitutes in the sausages formulation were carrageenan (0.51%), manioc starch (1.45%) and fat (1.2%).