995 resultados para Classification tests
Resumo:
To be diagnostically useful, structural MRI must reliably distinguish Alzheimer's disease (AD) from normal aging in individual scans. Recent advances in statistical learning theory have led to the application of support vector machines to MRI for detection of a variety of disease states. The aims of this study were to assess how successfully support vector machines assigned individual diagnoses and to determine whether data-sets combined from multiple scanners and different centres could be used to obtain effective classification of scans. We used linear support vector machines to classify the grey matter segment of T1-weighted MR scans from pathologically proven AD patients and cognitively normal elderly individuals obtained from two centres with different scanning equipment. Because the clinical diagnosis of mild AD is difficult we also tested the ability of support vector machines to differentiate control scans from patients without post-mortem confirmation. Finally we sought to use these methods to differentiate scans between patients suffering from AD from those with frontotemporal lobar degeneration. Up to 96% of pathologically verified AD patients were correctly classified using whole brain images. Data from different centres were successfully combined achieving comparable results from the separate analyses. Importantly, data from one centre could be used to train a support vector machine to accurately differentiate AD and normal ageing scans obtained from another centre with different subjects and different scanner equipment. Patients with mild, clinically probable AD and age/sex matched controls were correctly separated in 89% of cases which is compatible with published diagnosis rates in the best clinical centres. This method correctly assigned 89% of patients with post-mortem confirmed diagnosis of either AD or frontotemporal lobar degeneration to their respective group. Our study leads to three conclusions: Firstly, support vector machines successfully separate patients with AD from healthy aging subjects. Secondly, they perform well in the differential diagnosis of two different forms of dementia. Thirdly, the method is robust and can be generalized across different centres. This suggests an important role for computer based diagnostic image analysis for clinical practice.
Resumo:
Plutonium and (90)Sr are considered to be among the most radiotoxic nuclides produced by the nuclear fission process. In spite of numerous studies on mammals and humans there is still no general agreement on the retention half time of both radionuclides in the skeleton in the general population. Here we determined plutonium and (90)Sr in human vertebrae in individuals deceased between 1960 and 2004 in Switzerland. Plutonium was measured by sensitive SF-ICP-MS techniques and (90)Sr by radiometric methods. We compared our results to the ones obtained for other environmental compartments to reveal the retention half time of NBT fallout (239)Pu and (90)Sr in trabecular bones of the Swiss population. Results show that plutonium has a retention half time of 40+/-14 years. In contrast (90)Sr has a shorter retention half time of 13.5+/-1.0 years. Moreover (90)Sr retention half time in vertebrae is shown to be linked to the retention half time in food and other environmental compartments. These findings demonstrate that the renewal of the vertebrae through calcium homeostatic control is faster for (90)Sr excretion than for plutonium excretion. The precise determination of the retention half time of plutonium in the skeleton will improve the biokinetic model of plutonium metabolism in humans.
Resumo:
Saving our science from ourselves: the plight of biological classification. Biological classification ( nomenclature, taxonomy, and systematics) is being sold short. The desire for new technologies, faster and cheaper taxonomic descriptions, identifications, and revisions is symptomatic of a lack of appreciation and understanding of classification. The problem of gadget-driven science, a lack of best practice and the inability to accept classification as a descriptive and empirical science are discussed. The worst cases scenario is a future in which classifications are purely artificial and uninformative.
Resumo:
I discuss the identifiability of a structural New Keynesian Phillips curve when it is embedded in a small scale dynamic stochastic general equilibrium model. Identification problems emerge because not all the structural parameters are recoverable from the semi-structural ones and because the objective functions I consider are poorly behaved. The solution and the moment mappings are responsible for the problems.
Resumo:
The classical binary classification problem is investigatedwhen it is known in advance that the posterior probability function(or regression function) belongs to some class of functions. We introduceand analyze a method which effectively exploits this knowledge. The methodis based on minimizing the empirical risk over a carefully selected``skeleton'' of the class of regression functions. The skeleton is acovering of the class based on a data--dependent metric, especiallyfitted for classification. A new scale--sensitive dimension isintroduced which is more useful for the studied classification problemthan other, previously defined, dimension measures. This fact isdemonstrated by performance bounds for the skeleton estimate in termsof the new dimension.
Resumo:
Susceptibility of BALB/c mice to infection with Leishmania major is associated with a T helper type 2 (Th2) response. Since interleukin-4 (IL-4) is critically required early for Th2 cell development, the kinetics of IL-4 mRNA expression was compared in susceptible and resistant mice during the first days of infection. In contrast to resistant mice, susceptible mice exhibited a peak of IL-4 mRNA in their spleens 90 min after i.v. injection of parasites and in lymph nodes 16 h after s.c. injection. IL-12 and interferon-gamma (IFN-gamma) down-regulated this early peak of IL-4 mRNA; the effect of IL-12 was IFN-gamma dependent. Treatment of resistant C57BL/6 mice with anti-IFN-gamma allowed the expression of this early IL-4 response to L. major. The increased IL-4 mRNA expression occurred in V beta 8, 7, 2- CD4+ cells in BALB/c mice and NK1.1- CD4+ cells in anti-IFN-gamma treated C57BL/6 mice. These results show that the NK1.1+ CD4+ cells, responsible for the rapid burst of IL-4 production after i.v. injection of anti-CD3, do not contribute to the early IL-4 response to L. major.
Resumo:
Low malathion concentrations influence metabolism in Chironomus sancticaroli (Diptera, Chironomidae) in acute and chronic toxicity tests. Organophosphate compounds are used in agro-systems, and in programs to control pathogen vectors. Because they are continuously applied, organophosphates often reach water sources and may have an impact on aquatic life. The effects of acute and chronic exposure to the organophosphate insecticide malathion on the midge Chironomus sancticaroli are evaluated. To that end, three biochemical biomarkers, acetylcholinesterase (AChE), alpha (EST-α) and beta (EST-β) esterase were used. Acute bioassays with five concentrations of malathion, and chronic bioassays with two concentrations of malathion were carried out. In the acute exposure test, AChE, EST-α and EST-β activities declined by 66, 40 and 37%, respectively, at 0.251 µg L-1 and more than 80% at 1.37, 1.96 and 2.51 µg L-1. In chronic exposure tests, AChE and EST-α activities declined by 28 and 15% at 0.251 µg L-1. Results of the present study show that low concentrations of malathion can influence larval metabolism, indicating high toxicity for Chironomus sancticaroli and environmental risk associated with the use of organophosphates.
Resumo:
The principal objective of the knot theory is to provide a simple way of classifying and ordering all the knot types. Here, we propose a natural classification of knots based on their intrinsic position in the knot space that is defined by the set of knots to which a given knot can be converted by individual intersegmental passages. In addition, we characterize various knots using a set of simple quantum numbers that can be determined upon inspection of minimal crossing diagram of a knot. These numbers include: crossing number; average three-dimensional writhe; number of topological domains; and the average relaxation value
Resumo:
Comprend : Introduction à l'étude des diatomées ; Exposé de la classification des diatomées
Resumo:
Comprend : Introduction à l'étude des diatomées ; Exposé de la classification des diatomées
Resumo:
Comprend : Introduction à l'étude des diatomées ; Exposé de la classification des diatomées
Resumo:
Rapport de synthèseApproche et objectifL'objectif de la recherche était de préciser les relations existant entre l'insuffisance rénale chronique, l'anémie et l'accident vasculaire cérébral parmi des patients hospitalisés au Centre Hospitalier Universitaire Vaudois (CHUV) pour un accident vasculaire cérébral (AVC). Les auteurs ont déterminé la prévalence de l'anémie et de l'insuffisance rénale chronique parmi ces patients et examiné s'ils sont des facteurs de risque indépendants de la mortalité suite à un AVC.L'insuffisance rénale chronique est associée à un risque élevé de développer un AVC. L'anémie est une complication et une conséquence fréquente qui découle de l'insuffisance rénale chronique et est également un facteur de risque pour les maladies cérébro- et cardiovasculaires.MéthodeLa présente étude de cohorte rétrospective se base sur le registre des AVC du CHUV et inclut tous les patients traités suite à un premier AVC au service de neurologie du CHUV entre les années 2000 et 2003.Les variables utilisées pour l'analyse sont les caractéristiques démographiques, l'insuffisance rénale chronique, le débit de filtration glomérulaire.(GFR), l'anémie et d'autres facteurs de risque d'AVC. Ils ont été récoltés au moyen du système informatique du laboratoire du CHUV, d'entretiens téléphoniques (patients ou proches) et du registre des AVC du CHUV.L'insuffisance rénale chronique a été calculée sur base de la ,,Kidney Disease Outcomes Quality Initiative (K/DOQI)-CKD Classification", laquelle est divisée en cinq stades. L'anémie a été définie par une hémoglobine de < 120g/L pour les femmes et < 130g/L pour les hommes.Les analyses statistiques réalisées sont des tests Chi-carré, des tests de Τ ainsi que des courbes de Kaplan-Meier et le modèle de régression de Cox.RésultatsParmi 890 patients adultes avec un AVC, le GFR moyen était de 64.3 ml/min/1.73 m2, 17% souffraient d'anémie et 10% sont décédés pendant la première année après la sortie de l'hôpital, suite à l'"AVC index". Parmi ceux-ci, 61% avaient une insuffisance rénale chronique de stade 3-5 et 39% de stade 1 ou 2 selon les critères de K/DOQI.D'autre part un taux d'hémoglobine élevé a pu être associé à un risque moins élevé de mortalité un an après la sortie de l'hôpital.Conclusion et perspectiveNous avons constaté que l'anémie ainsi que l'insuffisance rénale chronique sont fréquents parmi les patients souffrant d'un AVC et qu'ils sont des facteurs de risque d'un taux de mortalité élevé après un an. En conséquence, il pourrait être utile de traiter les patients souffrant d'anémie et d'insuffisance rénale dès que possible afin de diminuer les complications et comorbidités résultants de ces maladies.La perspective est de rendre les cliniciens attentif à l'importance de l'insuffisance rénale et de l'anémie parmi les patients ayants développé un AVC, ainsi que d'initier le traitement approprié afin de diminuer les complications, les comorbidités ainsi que les récidives d'un AVC. L'efficacité et l'économicité des interventions visant à améliorer le pronostic chez les patients présentant un AVC et souffrant d'une insuffisance rénale chronique et / ou d'une anémie doivent être évaluées par des études appropriées.
Resumo:
Many classifiers achieve high levels of accuracy but have limited applicability in real world situations because they do not lead to a greater understanding or insight into the^way features influence the classification. In areas such as health informatics a classifier that clearly identifies the influences on classification can be used to direct research and formulate interventions. This research investigates the practical applications of Automated Weighted Sum, (AWSum), a classifier that provides accuracy comparable to other techniques whilst providing insight into the data. This is achieved by calculating a weight for each feature value that represents its influence on the class value. The merits of this approach in classification and insight are evaluated on a Cystic Fibrosis and Diabetes datasets with positive results.