911 resultados para Chromium reduction destillation, cold single step
Resumo:
Specklegram in multimode fiber has successfully been used as a sensor for detecting mechanical disturbance. Speckles in a multimode pure silica grapefruit fiber are observed and compared to that of a step-index multimode fiber, showing different features between them. The sensitivities to external disturbance of two kinds of fiber were measured, based on single-multiple-single mode (SMS) fiber structure. Experimental results show that the grapefruit fiber shows higher sensitivity than does the step-index multimode fiber. The transmission spectrum of the grapefruit fiber was measured as well, showing some oscillation features that are significantly different from that of a step-index multimode fiber. The experiments may provide suggestions to understand the mechanisms of light propagation in grapefruit fibers. (D 2008 Optical Society of America.
Resumo:
Five absorption hands, at 227, 300 340, 370 and 457nm, were observed in the optical absorption spectrum of Ce:Y3Al5O12 (Ce:YAG) crystals grown by the temperature gradient technique (TGT). The absorption bands at 227, 340, and 457 nm were identified Lis belonging to the Ce3+ -ion in the YAG crystal. A near UV optical emission band at 398nm was observed. with an excitation spectrum containing two bands, at 235 and 370nm. No fluorescence was detected under 300 nm excitation. The pair of absorption bands at 235 and 370 nm and the absorption band at 300 nm were attributed to the F- and F+-type color centers, respectively. The color centers model was also applied to explain the spectral changes in the Ce:YAG (TGT) crystal, including the reduction in the Ce 31 -ion absorption intensity, after annealing in an oxidizing atmosphere (air). (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
O mundo transforma-se constantemente, assim como tudo o que nele está inserido. A evolução da economia possibilitou uma maior integração do mercado financeiro, tornando o ambiente de negócios único e global. É cada vez mais comum o ingresso de recursos estrangeiros nos mercados de capitais nacionais, bem como fusões e aquisições entre companhias de países distintos e com características próprias. Essas empresas, por sua vez, esforçam-se em adotar normas que atendam aos stakeholders, sem perder a obrigatoriedade de apresentar suas demonstrações contábeis em conformidade com as características do país em que estão sediadas. Com a unificação dos países da Europa em um único bloco econômico, vislumbrou-se a possibilidade de desenvolver normas que pudessem ser compreendidas e interpretadas pelos diversos usuários destas demonstrações contábeis, em qualquer lugar do globo. Assim criadas, as normas de IFRS International Financial Reporting Standards buscaram a redução de diferenças nas metodologias contábeis e na forma com que são divulgadas em cada país, permitindo a comparabilidade e evidenciação das informações ao mercado. O IFRS, atualmente, já é adotado por mais de 100 países no mundo. No Brasil, em 28 de dezembro de 2007, promulgou-se a Lei 11.638 eliminando barreiras regulatórias que impediam a inserção total das empresas brasileiras no processo de convergência contábil internacional e aproximando sua legislação referente às normas contábeis às do mundo globalizado. O objeto do presente estudo é apresentar as principais mudanças decorrentes dessa adoção e seus impactos na contabilidade das empresas brasileiras, tomando como exemplo a empresa Vale, multinacional brasileira com alto volume diário de negociações de suas ações em Bolsa de Valores, grande parte de investidores estrangeiros. Os assuntos controversos, definições e entendimentos que ainda serão deliberados até 2010, evidenciam que não houve tempo hábil para a discussão e preparação das empresas, do fisco, de profissionais do mundo empresarial e acadêmico, dos contadores e auditores, bem como dos órgãos reguladores. Apesar das aparentes dificuldades, o Brasil deu um grande salto na qualidade das informações prestadas e aproxima-se dos grandes investidores globais, capacitando-se para receber recursos que possibilitem o seu crescimento econômico e o seu papel no cenário mundial.
Resumo:
A halitose se caracterizada pela emanação de um odor desagradável onde cerca de 90% de se origina dentro da cavidade oral. Estudos têm demonstrado uma relação direta entre a doença periodontal e o odor ofensivo do hálito. O presente estudo teve como objetivo avaliar a frequência e distribuição de halitose em um grupo de pacientes com doença periodontal em um estudo transversal observacional (n=112) e, em um estudo intervencionista, avaliar o efeito do tratamento periodontal full-mouth e convencional na redução da halitose em um grupo de pacientes com doença periodontal. Os pacientes responderam a uma anamnese, tiveram seu hálito mensurado pelo halímetro e teste organoléptico, além de realizados Índice de placa visível, Índice de sangramento gengival, Índice de saburra lingual e exame periodontal completo. No estudo 2, os pacientes foram submetidos a seis distintas formas de tratamento: terapia periodontal em sessão única, terapia convencional em quadrantes e, um grupo controle, com somente instrução de higiene oral. Todas as modalidades subdivididas: com e sem raspagem lingual diária. No primeiro estudo os resultados mostraram que, tanto para teste organoléptico quanto para o halímetro, houve maior grau de halitose nos grupos de idades mais avançadas, nos que relataram sangramento gengival e escovação menos que três vezes ao dia. Ainda no teste organoléptico a escovação de língua gerou diferença estatística. Não houve diferença estatística entre as medidas de halitose entre teste organoléptico e halímetro. Foram encontrados aproximadamente 75% de pacientes periodontais com halitose. No segundo estudo os resultados mostraram superioridade conforme análise do halímetro para 30, 60 e 90 dias para os grupos de raspagem em sessão única contra raspagem por quadrantes. Sendo todos os grupos superiores ao controle. Não houve diferença na abordagem com ou sem a raspagem de língua. De acordo com o teste organoléptico, não houve diferença entre os quatro tipos de tratamento periodontal comparados aos grupos controle. O mesmo aplica-se ao WTCI, onde os grupos de tratamento foram superiores ao controle, todavia semelhantes entre si. Concluiu-se que a idade e o sangramento gengival, assim como a frequência de escovação podem influenciar no grau de halitose, tanto no teste organoléptico quanto halímetro. A escovação de língua mostrou-se superior apenas na avaliação organoléptica. Quando avaliado através do halímetro o tratamento full-mouth foi superior ao tratamento convencional. Esta diferença não foi observada quando avaliado através do método organoléptico. Todas as modalidades de tratamento periodontal foram superiores aos grupos controle. A raspagem lingual não teve influência nos tratamentos.
Resumo:
An analytical expression is proposed to estimate the wave drag of an aerofoil equipped with shock control. The analysis extends the conventional approach for a single normal shock wave, based on the knowledge that all types of successful shock control on transonic aerofoils cause bifurcated λ-shock structures. The influence of surface curvature on the λ-shock structure has been taken into account. The extended method has been found to produce fairly good agreement with the results obtained by CFD methods while requiring negligible computational effort. This new formulation is expected to be beneficial in the industrial design process of transonic aerofoils and wings where a large number of computational simulations have to be performed.
Conduction bottleneck in silicon nanochain single electron transistors operating at room temperature
Resumo:
Single electron transistors are fabricated on single Si nanochains, synthesised by thermal evaporation of SiO solid sources. The nanochains consist of one-dimensional arrays of ~10nm Si nanocrystals, separated by SiO 2 regions. At 300 K, strong Coulomb staircases are seen in the drain-source current-voltage (I ds-V ds) characteristics, and single-electron oscillations are seen in the drain-source current-gate voltage (I ds-V ds) characteristics. From 300-20 K, a large increase in the Coulomb blockade region is observed. The characteristics are explained using singleelectron Monte Carlo simulation, where an inhomogeneous multiple tunnel junction represents a nanochain. Any reduction in capacitance at a nanocrystal well within the nanochain creates a conduction " bottleneck", suppressing current at low voltage and improving the Coulomb staircase. The single-electron charging energy at such an island can be very high, ~20k BT at 300 K. © 2012 The Japan Society of Applied Physics.
Resumo:
Recent development of solution processable organic semiconductors delineates the emergence of a new generation of air-stable, high performance p- and n-type materials. This makes it indeed possible for printed organic complementary circuits (CMOS) to be used in real applications. The main technical bottleneck for organic CMOS to be adopted as the next generation organic integrated circuit is how to deposit and pattern both p- and n-type semiconductor materials with high resolutions at the same time. It represents a significant technical challenge, especially if it can be done for multiple layers without mask alignment. In this paper, we propose a one-step self-aligned fabrication process which allows the deposition and high resolution patterning of functional layers for both p- and n-channel thin film transistors (TFTs) simultaneously. All the dimensional information of the device components is featured on a single imprinting stamp, and the TFT-channel geometry, electrodes with different work functions, p- and n-type semiconductors and effective gate dimensions can all be accurately defined by one-step imprinting and the subsequent pattern transfer process. As an example, we have demonstrated an organic complementary inverter fabricated by 3D imprinting in combination with inkjet printing and the measured electrical characteristics have validated the feasibility of the novel technique. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Automating the model generation process of infrastructure can substantially reduce the modeling time and cost. This paper presents a method to generate a sparse point cloud of an infrastructure scene using a single video camera under practical constraints. It is the first step towards establishing an automatic framework for object-oriented as-built modeling. Motion blur and key frame selection criteria are considered. Structure from motion and bundle adjustment are explored. The method is demonstrated in a case study where the scene of a reinforced concrete bridge is videotaped, reconstructed, and metrically validated. The result indicates the applicability, efficiency, and accuracy of the proposed method.
Resumo:
Papermaking is considered as an energy-intensive industry partly due to the fact that the machinery and procedures have been designed at the time when energy was both cheap and plentiful. A typical paper machine manufactures a variety of different products (grades) which impose variable per-unit raw material and energy costs to the mill. It is known that during a grade change operation the products are not market-worthy. Therefore, two different production regimes, i.e. steady state and grade transition can be recognised in papermaking practice. Among the costs associated with paper manufacture, the energy cost is 'more variable' due to (usually) day-to-day variations of the energy prices. Moreover, the production of a grade is often constrained by customer delivery time requirements. Given the above constraints and production modes, the product scheduling technique proposed in this paper aims at optimising the sequence of orders in a single machine so that the cost of production (mainly determined by the energy) is minimised. Simulation results obtained from a commercial board machine in the UK confirm the effectiveness of the proposed method. © 2011 IFAC.
Resumo:
Hybrid large-eddy type simulations for cold jet flows from a serrated nozzle are performed at an acoustic Mach number Ma ac = 0.9 and Re = 1.03×10 6. Since the solver being used tends towards having dissipative qualities, the subgrid scale (SGS) model is omitted, giving a numerical type LES (NLES) or implicit LES (ILES) reminiscent procedure. To overcome near wall streak resolution problems a near wall RANS (Reynolds averaged Navier-Stokes) model is smoothly blended to the LES making a hybrid RANS-ILES. The geometric complexity of the serrated nozzle is fully considered without simplification or emulation. An improved but still modest hexahedral multi-block grid with circa 20 million grid points (with respect to 12.5 million in Xia et al.; Int J Heat Fluid Flow 30:1067-1079, 2009) is used. Despite the modest grid size, encouraging and improved results are obtained. Directly resolved mean and second-order fluctuating quantities along the jet centerline and in the jet shear layer compare favorably with measurements. The radiated far-field sound predicted using the Ffowcs Williams and Hawkings (FW-H) surface integral method shows good agreement with the measurements in directivity and sound spectra. © 2011 Springer Science+Business Media B.V.
Resumo:
Embedded propulsion systems, such as for example used in advanced hybrid-wing body aircraft, can potentially offer major fuel burn and noise reduction benefits but introduce challenges in the aerodynamic and acoustic integration of the high-bypass ratio fan system. A novel approach is proposed to quantify the effects of non-uniform flow on the generation and propagation of multiple pure tone noise (MPTs). The new method is validated on a conventional inlet geometry first. The ultimate goal is to conduct a parametric study of S-duct inlets in order to quantify the effects of inlet design parameters on the acoustic signature. The key challenge is that the mechanism underlying the distortion transfer, noise source generation and propagation through the non-uniform flow field are inherently coupled such that a simultaneous computation of the aerodynamics and acoustics is required. The technical approach is based on a body force description of the fan blade row that is able to capture the distortion transfer and the MPT noise generation mechanisms while greatly reducing computational cost. A single, 3-D full-wheel unsteady CFD simulation, in which the Euler equations are solved to second-order spatial and temporal accuracy, simultaneously computes the MPT noise generation and its propagation in distorted mean flow. Several numerical tools were developed to enable the implementation of this new approach. Parametric studies were conducted to determine appropriate grid and time step sizes for the propagation of acoustic waves. The Ffowcs-Williams and Hawkings integral method is used to propagate the noise to far field receivers. Non-reflecting boundary conditions are implemented through the use of acoustic buffer zones. The body force modeling approach is validated and proof-of-concept studies demonstrate the generation of disturbances at both blade-passing and shaft-order frequencies using the perturbed body force method. The full methodology is currently being validated using NASA's Source Diagnostic Test (SDT) fan and inlet geometry. Copyright © 2009 by Jeff Defoe, Alex Narkaj & Zoltan Spakovszky.
Hydrogen-induced morphotropic phase transformation of single-crystalline vanadium dioxide nanobeams.
Resumo:
We report a morphotropic phase transformation in vanadium dioxide (VO2) nanobeams annealed in a high-pressure hydrogen gas, which leads to the stabilization of metallic phases. Structural analyses show that the annealed VO2 nanobeams are hexagonal-close-packed structures with roughened surfaces at room temperature, unlike as-grown VO2 nanobeams with the monoclinic structure and with clean surfaces. Quantitative chemical examination reveals that the hydrogen significantly reduces oxygen in the nanobeams with characteristic nonlinear reduction kinetics which depend on the annealing time. Surprisingly, the work function and the electrical resistance of the reduced nanobeams follow a similar trend to the compositional variation due mainly to the oxygen-deficiency-related defects formed at the roughened surfaces. The electronic transport characteristics indicate that the reduced nanobeams are metallic over a large range of temperatures (room temperature to 383 K). Our results demonstrate the interplay between oxygen deficiency and structural/electronic phase transitions, with implications for engineering electronic properties in vanadium oxide systems.
Resumo:
Tantalum-oxide thin films are shown to catalyse single- and multi-walled carbon nanotube growth by chemical vapour deposition. A low film thickness, the nature of the support material (best results with SiO
Resumo:
The next generation of diesel emission control devices includes 4-way catalyzed filtration systems (4WCFS) consisting of both NOx and diesel particulate matter (DPM) control. A methodology was developed to simultaneously evaluate the NOx and DPM control performance of miniature 4WCFS made from acicular mullite, an advanced ceramic material (ACM), that were challenged with diesel exhaust. The impact of catalyst loading and substrate porosity on catalytic performance of the NOx trap was evaluated. Simultaneously with NOx measurements, the real-time solid particle filtration performance of catalyst-coated standard and high porosity filters was determined for steady-state and regenerative conditions. The use of high porosity ACM 4-way catalyzed filtration systems reduced NOx by 99% and solid and total particulate matter by 95% when averaged over 10 regeneration cycles. A "regeneration cycle" refers to an oxidizing ("lean") exhaust condition followed by a reducing ("rich") exhaust condition resulting in NOx storage and NOx reduction (i.e., trap "regeneration"), respectively. Standard porosity ACM 4-way catalyzed filtration systems reduced NOx by 60-75% and exhibited 99.9% filtration efficiency. The rich/lean cycling used to regenerate the filter had almost no impact on solid particle filtration efficiency but impacted NOx control. Cycling resulted in the formation of very low concentrations of semivolatile nucleation mode particles for some 4WCFS formulations. Overall, 4WCFS show promise for significantly reducing diesel emissions into the atmosphere in a single control device. © 2013 American Chemical Society.
Resumo:
The presence of liquid fuel inside the engine cylinder is believed to be a strong contributor to the high levels of hydrocarbon emissions from spark ignition (SI) engines during the warm-up period. Quantifying and determining the fate of the liquid fuel that enters the cylinder is the first step in understanding the process of emissions formation. This work uses planar laser induced fluorescence (PLIF) to visualize the liquid fuel present in the cylinder. The fluorescing compounds in indolene, and mixtures of iso-octane with dopants of different boiling points (acetone and 3-pentanone) were used to trace the behavior of different volatility components. Images were taken of three different planes through the engine intersecting the intake valve region. A closed valve fuel injection strategy was used, as this is the strategy most commonly used in practice. Background subtraction and masking were both performed to reduce the effect of any spurious fluorescence. The images were analyzed on both a time and crank angle (CA) basis, showing the time of maximum liquid fuel present in the cylinder and the effect of engine events on the inflow of liquid fuel. The results show details of the liquid fuel distribution as it enters the engine as a function of crankangle degree, volatility and location in the cylinder. A. semi-quantitative analysis based on the integration of the image intensities provides additional information on the temporal distribution of the liquid fuel flow. © 1998 Society of Automotive Engineers, Inc.