10 resultados para Chromium reduction destillation, cold single step

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytochromes P450 (P450s) are a remarkable class of heme enzymes that catalyze the metabolism of xenobiotics and the biosynthesis of signaling molecules. Controlled electron flow into the thiolate-ligated heme active site allows P450s to activate molecular oxygen and hydroxylate aliphatic C–H bonds via the formation of high-valent metal-oxo intermediates (compounds I and II). Due to the reactive nature and short lifetimes of these intermediates, many of the fundamental steps in catalysis have not been observed directly. The Gray group and others have developed photochemical methods, known as “flash-quench,” for triggering electron transfer (ET) and generating redox intermediates in proteins in the absence of native ET partners. Photo-triggering affords a high degree of temporal precision for the gating of an ET event; the initial ET and subsequent reactions can be monitored on the nanosecond-to-second timescale using transient absorption (TA) spectroscopies. Chapter 1 catalogues critical aspects of P450 structure and mechanism, including the native pathway for formation of compound I, and outlines the development of photochemical processes that can be used to artificially trigger ET in proteins. Chapters 2 and 3 describe the development of these photochemical methods to establish electronic communication between a photosensitizer and the buried P450 heme. Chapter 2 describes the design and characterization of a Ru-P450-BM3 conjugate containing a ruthenium photosensitizer covalently tethered to the P450 surface, and nanosecond-to-second kinetics of the photo-triggered ET event are presented. By analyzing data at multiple wavelengths, we have identified the formation of multiple ET intermediates, including the catalytically relevant compound II; this intermediate is generated by oxidation of a bound water molecule in the ferric resting state enzyme. The work in Chapter 3 probes the role of a tryptophan residue situated between the photosensitizer and heme in the aforementioned Ru-P450 BM3 conjugate. Replacement of this tryptophan with histidine does not perturb the P450 structure, yet it completely eliminates the ET reactivity described in Chapter 2. The presence of an analogous tryptophan in Ru-P450 CYP119 conjugates also is necessary for observing oxidative ET, but the yield of heme oxidation is lower. Chapter 4 offers a basic description of the theoretical underpinnings required to analyze ET. Single-step ET theory is first presented, followed by extensions to multistep ET: electron “hopping.” The generation of “hopping maps” and use of a hopping map program to analyze the rate advantage of hopping over single-step ET is described, beginning with an established rhenium-tryptophan-azurin hopping system. This ET analysis is then applied to the Ru-tryptophan-P450 systems described in Chapter 2; this strongly supports the presence of hopping in Ru-P450 conjugates. Chapter 5 explores the implementation of flash-quench and other phototriggered methods to examine the native reductive ET and gas binding events that activate molecular oxygen. In particular, TA kinetics that demonstrate heme reduction on the microsecond timescale for four Ru-P450 conjugates are presented. In addition, we implement laser flash-photolysis of P450 ferrous–CO to study the rates of CO rebinding in the thermophilic P450 CYP119 at variable temperature. Chapter 6 describes the development and implementation of air-sensitive potentiometric redox titrations to determine the solution reduction potentials of a series of P450 BM3 mutants, which were designed for non-native cyclopropanation of styrene in vivo. An important conclusion from this work is that substitution of the axial cysteine for serine shifts the wild type reduction potential positive by 130 mV, facilitating reduction by biological redox cofactors in the presence of poorly-bound substrates. While this mutation abolishes oxygenation activity, these mutants are capable of catalyzing the cyclopropanation of styrene, even within the confines of an E. coli cell. Four appendices are also provided, including photochemical heme oxidation in ruthenium-modified nitric oxide synthase (Appendix A), general protocols (Appendix B), Chapter-specific notes (Appendix C) and Matlab scripts used for data analysis (Appendix D).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein are described the total syntheses of all members of the transtaganolide and basiliolide natural product family. Utilitzation of an Ireland–Claisen rearrangement/Diels–Alder cycloaddition cascade (ICR/DA) allowed for rapid assembly of the transtaganolide and basiliolide oxabicyclo[2.2.2]octane core. This methodology is general and was applicable to all members of the natural product family.

A brief introduction outlines all the synthetic progress previously disclosed by Lee, Dudley, and Johansson. This also includes the initial syntheses of transtaganolides C and D, as well as basiliolide B and epi-basiliolide B accomplished by Stoltz in 2011. Lastly, we discuss our racemic synthesis of basililide C and epi-basiliolide C, which utilized an ICR/DA cascade to constuct the oxabicyclo[2.2.2]octane core and formal [5+2] annulation to form the ketene-acetal containing 7-membered C-ring.

Next, we describe a strategy for an asymmetric ICR/DA cascade, by incorporation of a chiral silane directing group. This allowed for enantioselective construction of the C8 all-carbon quaternary center formed in the Ireland–Claisen rearrangement. Furthermore, a single hydride reduction and subsequent translactonization of a C4 methylester bearing oxabicyclo[2.2.2]octane core demonstrated a viable strategy for the desired skeletal rearrangement to obtain pentacyclic transtaganolides A and B. Application of the asymmetric strategy culminated in the total syntheses of (–)-transtaganolide A, (+)-transtaganolide B, (+)-transtaganolide C, and (–)-transtaganolide D. Comparison of the optical rotation data of the synthetically derived transtaganolides to that from the isolated counterparts has overarching biosynthetic implications which are discussed.

Lastly, improvement to the formal [5+2] annulation strategy is described. Negishi cross-coupling of methoxyethynyl zinc chloride using a palladium Xantphos catalyst is optimized for iodo-cyclohexene. Application of this technology to an iodo-pyrone geranyl ester allowed for formation and isolation of the eneyne product. Hydration of the enenye product forms natural metabolite basiliopyrone. Furthermore, the eneyne product can undergo an ICR/DA cascade and form transtaganolides C and D in a single step from an achiral monocyclic precursor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The asymmetric construction of quaternary stereocenters is a topic of great interest in the organic chemistry community given their prevalence in natural products and biologically active molecules. Over the last decade, the Stoltz group has pursued the synthesis of this challenging motif via a palladium-catalyzed allylic alkylation using chiral phosphinooxazoline (PHOX) ligands. Recent results indicate that the alkylation of lactams and imides consistently proceeds with enantioselectivities substantially higher than any other substrate class previously examined in this system. This observation prompted exploration of the characteristics that distinguish these molecules as superior alkylation substrates, resulting in newfound insights and marked improvements in the allylic alkylation of carbocyclic compounds.

General routes to cyclopentanoid and cycloheptanoid core structures have been developed that incorporate the palladium-catalyzed allylic alkylation as a key transformation. The unique reactivity of α-quaternary vinylogous esters upon addition of hydride or organometallic reagents enables divergent access to γ-quaternary acylcyclopentenes or cycloheptenones through respective ring contraction or carbonyl transposition pathways. Derivatization of the resulting molecules provides a series of mono-, bi-, and tricyclic systems that can serve as valuable intermediates for the total synthesis of complex natural products.

The allylic alkylation and ring contraction methodology has been employed to prepare variably functionalized bicyclo[5.3.0]decane molecules and enables the enantioselective total syntheses of daucene, daucenal, epoxydaucenal B, and 14-p-anisoyloxydauc-4,8-diene. This route overcomes the challenge of accessing β-substituted acylcyclopentenes by employing a siloxyenone to effect the Grignard addition and ring opening in a single step. Subsequent ring-closing metathesis and aldol reactions form the hydroazulene core of these targets. Derivatization of a key enone intermediate allows access to either the daucane sesquiterpene or sphenobolane diterpene carbon skeletons, as well as other oxygenated scaffolds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diterpenoid constituents of the Isodon plants have attracted reasearchers interested in both their chemical structures and biological properties for more than a half-century. In recent years, the isolations of new members displaying previously unprecedented ring systems and highly selective biological properties have piqued interest from the synthetic community in this class of natural products.

Reported herein is the first total synthesis of such a recently isolated diterpenoid, (–)-maoecrystal Z. The principal transformations implemented in this synthesis include two highly diastereoselective radical cyclization reactions: a Sm(II)-mediated reductive cascade cyclization, which forms two rings and establishes four new stereocenters in a single step, and a Ti(III)-mediated reductive epoxide-acrylate coupling that yields a functionalized spirolactone product, which forms a core bicycle of maoecrystal Z.

The preparation of two additional ent-kauranoid natural products, (–)-trichorabdal A and (–)-longikaurin E, is also described from a derivative of this key spirolactone. These syntheses are additionally enabled by the palladium-mediated oxidative cyclization reaction of a silyl ketene acetal precursor that is used to install the bridgehead all-carbon quaternary stereocenter and bicyclo[3.2.1]octane present in each natural product. These studies have established a synthetic relationship among three architecturally distinct ent-kaurane diterpenoids and have forged a path for the preparation of interesting unnatural ent-kauranoid structural analogs for more thorough biological study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Memory storage in the brain involves adjustment of the strength of existing synapses and formation of new neural networks. A key process underlying memory formation is synaptic plasticity, the ability of excitatory synapses to strengthen or weaken their connections in response to patterns of activity between their connected neurons. Synaptic plasticity is governed by the precise pattern of Ca²⁺ influx through postsynaptic N-methyl-D-aspartate-type glutamate receptors (NMDARs), which can lead to the activation of the small GTPases Ras and Rap. Differential activation of Ras and Rap acts to modulate synaptic strength by promoting the insertion or removal of 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid receptors (AMPARs) from the synapse. Synaptic GTPase activating protein (synGAP) regulates AMPAR levels by catalyzing the inactivation of GTP-bound (active) Ras or Rap. synGAP is positioned in close proximity to the cytoplasmic tail regions of the NMDAR through its association with the PDZ domains of PSD-95. SynGAP’s activity is regulated by the prominent postsynaptic protein kinase, Ca²⁺/calmodulin-dependent protein kinase II (CaMKII) and cyclin-dependent kinase 5 (CDK5), a known binding partner of CaMKII. Modulation of synGAP’s activity by phosphorylation may alter the ratio of active Ras to Rap in spines, thus pushing the spine towards the insertion or removal of AMPARs, subsequently strengthening or weakening the synapse. To date, all biochemical studies of the regulation of synGAP activity by protein kinases have utilized impure preparations of membrane bound synGAP. Here we have clarified the effects of phosphorylation of synGAP on its Ras and Rap GAP activities by preparing and utilizing purified, soluble recombinant synGAP, Ras, Rap, CaMKII, CDK5, PLK2, and CaM. Using mass spectrometry, we have confirmed the presence of previously identified CaMKII and CDK5 sites in synGAP, and have identified novel sites of phosphorylation by CaMKII, CDK5, and PLK2. We have shown that the net effect of phosphorylation of synGAP by CaMKII, CDK5, and PLK2 is an increase in its GAP activity toward HRas and Rap1. In contrast, there is no effect on its GAP activity toward Rap2. Additionally, by assaying the GAP activity of phosphomimetic synGAP mutants, we have been able to hypothesize the effects of CDK5 phosphorylation at specific sites in synGAP. In the course of this work, we also found, unexpectedly, that synGAP is itself a Ca²⁺/CaM binding protein. While Ca²⁺/CaM binding does not directly affect synGAP activity, it causes a conformational change in synGAP that increases the rate of its phosphorylation and exposes additional phosphorylation sites that are inaccessible in the absence of Ca²⁺/CaM.

The postsynaptic density (PSD) is an electron-dense region in excitatory postsynaptic neurons that contains a high concentration of glutamate receptors, cytoskeletal proteins, and associated signaling enzymes. Within the PSD, three major classes of scaffolding molecules function to organize signaling enzymes and glutamate receptors. PDZ domains present in the Shank and PSD-95 scaffolds families serve to physically link AMPARs and NMDARs to signaling molecules in the PSD. Because of the specificity and high affinity of PDZ domains for their ligands, I reasoned that these interacting pairs could provide the core components of an affinity chromatography system, including affinity resins, affinity tags, and elution agents. I show that affinity columns containing the PDZ domains of PSD-95 can be used to purify active PDZ domain-binding proteins to very high purity in a single step. Five heterologously expressed neuronal proteins containing endogenous PDZ domain ligands (NMDAR GluN2B subunit Tail, synGAP, neuronal nitric oxide synthase PDZ domain, cysteine rich interactor of PDZ three and cypin) were purified using PDZ domain resin, with synthetic peptides having the sequences of cognate PDZ domain ligands used as elution agents. I also show that conjugation of PDZ domain-related affinity tags to Proteins Of Interest (POIs) that do not contain endogenous PDZ domains or ligands does not alter protein activity and enables purification of the POIs on PDZ domain-related affinity resins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expedient synthetic approaches to the highly functionalized polycyclic alkaloids communesin F and perophoramidine are described using a unified approach featuring a key decarboxylative allylic alkylation to access a crucial and highly congested 3,3-disubstituted oxindole. Described are two distinct, stereoselective alkylations that produce structures in divergent diastereomeric series possessing the critical vicinal all-carbon quaternary centers needed for each synthesis. Synthetic studies toward these challenging core structures have revealed a number of unanticipated modes of reactivity inherent to these complex alkaloid scaffolds. Finally, a previously unknown mild and efficient deprotection protocol for the o-nitrobenzyl group is disclosed – this serendipitous discovery permitted a concise endgame for the formal syntheses of both communesin F and perophoramidine.

In addition, the atroposelective synthesis of PINAP ligands has been accomplished via a palladium-catalyzed C–P coupling process through dynamic kinetic resolution. These catalytic conditions allow access to a wide variety of alkoxy- and benzyloxy-substituted PINAP ligands in high enantiomeric excess.

An efficient and exceptionally mild intramolecular nickel-catalyzed carbon–oxygen bond-forming reaction between vinyl halides and primary, secondary, and tertiary alcohols has been achieved. This operationally simple method allows direct access to cyclic vinyl ethers in high yields in a single step.

Finally, synthetic studies toward polycyclic ineleganolide are described. The entire fragmented carbon framework has been constructed from this work. Highly (Z)-selective olefination was achieved by the method by the Ando group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In response to infection or tissue dysfunction, immune cells develop into highly heterogeneous repertoires with diverse functions. Capturing the full spectrum of these functions requires analysis of large numbers of effector molecules from single cells. However, currently only 3-5 functional proteins can be measured from single cells. We developed a single cell functional proteomics approach that integrates a microchip platform with multiplex cell purification. This approach can quantitate 20 proteins from >5,000 phenotypically pure single cells simultaneously. With a 1-million fold miniaturization, the system can detect down to ~100 molecules and requires only ~104 cells. Single cell functional proteomic analysis finds broad applications in basic, translational and clinical studies. In the three studies conducted, it yielded critical insights for understanding clinical cancer immunotherapy, inflammatory bowel disease (IBD) mechanism and hematopoietic stem cell (HSC) biology.

To study phenotypically defined cell populations, single cell barcode microchips were coupled with upstream multiplex cell purification based on up to 11 parameters. Statistical algorithms were developed to process and model the high dimensional readouts. This analysis evaluates rare cells and is versatile for various cells and proteins. (1) We conducted an immune monitoring study of a phase 2 cancer cellular immunotherapy clinical trial that used T-cell receptor (TCR) transgenic T cells as major therapeutics to treat metastatic melanoma. We evaluated the functional proteome of 4 antigen-specific, phenotypically defined T cell populations from peripheral blood of 3 patients across 8 time points. (2) Natural killer (NK) cells can play a protective role in chronic inflammation and their surface receptor – killer immunoglobulin-like receptor (KIR) – has been identified as a risk factor of IBD. We compared the functional behavior of NK cells that had differential KIR expressions. These NK cells were retrieved from the blood of 12 patients with different genetic backgrounds. (3) HSCs are the progenitors of immune cells and are thought to have no immediate functional capacity against pathogen. However, recent studies identified expression of Toll-like receptors (TLRs) on HSCs. We studied the functional capacity of HSCs upon TLR activation. The comparison of HSCs from wild-type mice against those from genetics knock-out mouse models elucidates the responding signaling pathway.

In all three cases, we observed profound functional heterogeneity within phenotypically defined cells. Polyfunctional cells that conduct multiple functions also produce those proteins in large amounts. They dominate the immune response. In the cancer immunotherapy, the strong cytotoxic and antitumor functions from transgenic TCR T cells contributed to a ~30% tumor reduction immediately after the therapy. However, this infused immune response disappeared within 2-3 weeks. Later on, some patients gained a second antitumor response, consisted of the emergence of endogenous antitumor cytotoxic T cells and their production of multiple antitumor functions. These patients showed more effective long-term tumor control. In the IBD mechanism study, we noticed that, compared with others, NK cells expressing KIR2DL3 receptor secreted a large array of effector proteins, such as TNF-α, CCLs and CXCLs. The functions from these cells regulated disease-contributing cells and protected host tissues. Their existence correlated with IBD disease susceptibility. In the HSC study, the HSCs exhibited functional capacity by producing TNF-α, IL-6 and GM-CSF. TLR stimulation activated the NF-κB signaling in HSCs. Single cell functional proteome contains rich information that is independent from the genome and transcriptome. In all three cases, functional proteomic evaluation uncovered critical biological insights that would not be resolved otherwise. The integrated single cell functional proteomic analysis constructed a detail kinetic picture of the immune response that took place during the clinical cancer immunotherapy. It revealed concrete functional evidence that connected genetics to IBD disease susceptibility. Further, it provided predictors that correlated with clinical responses and pathogenic outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The motion of a single Brownian particle of arbitrary size through a dilute colloidal dispersion of neutrally buoyant bath spheres of another characteristic size in a Newtonian solvent is examined in two contexts. First, the particle in question, the probe particle, is subject to a constant applied external force drawing it through the suspension as a simple model for active and nonlinear microrheology. The strength of the applied external force, normalized by the restoring forces of Brownian motion, is the Péclet number, Pe. This dimensionless quantity describes how strongly the probe is upsetting the equilibrium distribution of the bath particles. The mean motion and fluctuations in the probe position are related to interpreted quantities of an effective viscosity of the suspension. These interpreted quantities are calculated to first order in the volume fraction of bath particles and are intimately tied to the spatial distribution, or microstructure, of bath particles relative to the probe. For weak Pe, the disturbance to the equilibrium microstructure is dipolar in nature, with accumulation and depletion regions on the front and rear faces of the probe, respectively. With increasing applied force, the accumulation region compresses to form a thin boundary layer whose thickness scales with the inverse of Pe. The depletion region lengthens to form a trailing wake. The magnitude of the microstructural disturbance is found to grow with increasing bath particle size -- small bath particles in the solvent resemble a continuum with effective microviscosity given by Einstein's viscosity correction for a dilute dispersion of spheres. Large bath particles readily advect toward the minimum approach distance possible between the probe and bath particle, and the probe and bath particle pair rotating as a doublet is the primary mechanism by which the probe particle is able to move past; this is a process that slows the motion of the probe by a factor of the size ratio. The intrinsic microviscosity is found to force thin at low Péclet number due to decreasing contributions from Brownian motion, and force thicken at high Péclet number due to the increasing influence of the configuration-averaged reduction in the probe's hydrodynamic self mobility. Nonmonotonicity at finite sizes is evident in the limiting high-Pe intrinsic microviscosity plateau as a function of bath-to-probe particle size ratio. The intrinsic microviscosity is found to grow with the size ratio for very small probes even at large-but-finite Péclet numbers. However, even a small repulsive interparticle potential, that excludes lubrication interactions, can reduce this intrinsic microviscosity back to an order one quantity. The results of this active microrheology study are compared to previous theoretical studies of falling-ball and towed-ball rheometry and sedimentation and diffusion in polydisperse suspensions, and the singular limit of full hydrodynamic interactions is noted.

Second, the probe particle in question is no longer subject to a constant applied external force. Rather, the particle is considered to be a catalytically-active motor, consuming the bath reactant particles on its reactive face while passively colliding with reactant particles on its inert face. By creating an asymmetric distribution of reactant about its surface, the motor is able to diffusiophoretically propel itself with some mean velocity. The effects of finite size of the solute are examined on the leading order diffusive microstructure of reactant about the motor. Brownian and interparticle contributions to the motor velocity are computed for several interparticle interaction potential lengths and finite reactant-to-motor particle size ratios, with the dimensionless motor velocity increasing with decreasing motor size. A discussion on Brownian rotation frames the context in which these results could be applicable, and future directions are proposed which properly incorporate reactant advection at high motor velocities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Motivated by needs in molecular diagnostics and advances in microfabrication, researchers started to seek help from microfluidic technology, as it provides approaches to achieve high throughput, high sensitivity, and high resolution. One strategy applied in microfluidics to fulfill such requirements is to convert continuous analog signal into digitalized signal. One most commonly used example for this conversion is digital PCR, where by counting the number of reacted compartments (triggered by the presence of the target entity) out of the total number of compartments, one could use Poisson statistics to calculate the amount of input target.

However, there are still problems to be solved and assumptions to be validated before the technology is widely employed. In this dissertation, the digital quantification strategy has been examined from two angles: efficiency and robustness. The former is a critical factor for ensuring the accuracy of absolute quantification methods, and the latter is the premise for such technology to be practically implemented in diagnosis beyond the laboratory. The two angles are further framed into a “fate” and “rate” determination scheme, where the influence of different parameters is attributed to fate determination step or rate determination step. In this discussion, microfluidic platforms have been used to understand reaction mechanism at single molecule level. Although the discussion raises more challenges for digital assay development, it brings the problem to the attention of the scientific community for the first time.

This dissertation also contributes towards developing POC test in limited resource settings. On one hand, it adds ease of access to the tests by incorporating massively producible, low cost plastic material and by integrating new features that allow instant result acquisition and result feedback. On the other hand, it explores new isothermal chemistry and new strategies to address important global health concerns such as cyctatin C quantification, HIV/HCV detection and treatment monitoring as well as HCV genotyping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the first part of this thesis (Chapters I and II), the synthesis, characterization, reactivity and photophysics of per(difluoroborated) tetrakis(pyrophosphito)diplatinate(II) (Pt(POPBF2)) are discussed. Pt(POP-BF2) was obtained by reaction of [Pt2(POP)4]4- with neat boron trifluoride diethyl etherate (BF3·Et2O). While Pt(POP-BF2) and [Pt2(POP)4]4- have similar structures and absorption spectra, they differ in significant ways. Firstly, as discussed in Chapter I, the former is less susceptible to oxidation, as evidenced by the reversibility of its oxidation by I2. Secondly, while the first excited triplet states (T1) of both Pt(POP-BF2) and [Pt2(POP)4]4- exhibit long lifetimes (ca. 0.01 ms at room temperature) and substantial zero-field splitting (40 cm-1), Pt(POP-BF2) also has a remarkably long-lived (1.6 ns at room temperature) singlet excited state (S1), indicating slow intersystem crossing (ISC). Fluorescence lifetime and quantum yield (QY) of Pt(POP-BF2) were measured over a range of temperatures, providing insight into the slow ISC process. The remarkable spectroscopic and photophysical properties of Pt(POP-BF2), both in solution and as a microcrystalline powder, form the theme of Chapter II.

In the second part of the thesis (Chapters III and IV), the electrochemical reduction of CO2 to CO by [(L)Mn(CO)3]- catalysts is investigated using density functional theory (DFT). As discussed in Chapter III, the turnover frequency (TOF)-limiting step is the dehydroxylation of [(bpy)Mn(CO)3(CO2H)]0/- (bpy = bipyridine) by trifluoroethanol (TFEH) to form [(bpy)Mn(CO)4]+/0. Because the dehydroxylation of [(bpy)Mn(CO)3(CO2H)]- is faster, maximum TOF (TOFmax) is achieved at potentials sufficient to completely reduce [(bpy)Mn(CO)3(CO2H)]0 to [(bpy)Mn(CO)3(CO2H)]-. Substitution of bipyridine with bipyrimidine reduces the overpotential needed, but at the expense of TOFmax. In Chapter IV, the decoration of the bipyrimidine ligand with a pendant alcohol is discussed as a strategy to increase CO2 reduction activity. Our calculations predict that the pendant alcohol acts in concert with an external TFEH molecule, the latter acidifying the former, resulting in a ~ 80,000-fold improvement in the rate of TOF-limiting dehydroxylation of [(L)Mn(CO)3(CO2H)]-.

An interesting strategy for the co-upgrading of light olefins and alkanes into heavier alkanes is the subject of Appendix B. The proposed scheme involves dimerization of the light olefin, operating in tandem with transfer hydrogenation between the olefin dimer and the light alkane. The work presented therein involved a Ta olefin dimerization catalyst and a silica-supported Ir transfer hydrogenation catalyst. Olefin dimer was formed under reaction conditions; however, this did not undergo transfer hydrogenation with the light alkane. A significant challenge is that the Ta catalyst selectively produces highly branched dimers, which are unable to undergo transfer hydrogenation.