812 resultados para Cellulose nanofibers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The soluble and insoluble cotyledon (SPF-Co and IPF-Co) and tegument (SPF-Te and IPF-Te) cell wall polymer fractions of common beans (Phaseolus vulgaris) were isolated using a chemical-enzymatic method. The sugar composition showed that SPF-Co was constituted of 38.6% arabinose, 23.4% uronic acids, 12.7% galactose, 11.2% xylose, 6.4% mannose and 6.1% glucose, probably derived from slightly branched and weakly bound polymers. The IPF-Co was fractionated with chelating agent (CDTA) and with increasing concentrations of NaOH. The bulk of the cell wall polymers (29.4%) were extracted with 4.0M NaOH and this fraction contained mainly arabinose (55.0%), uronic acid (18.9%), glucose (10.7%), xylose (10.3%) and galactose (3.4%). About 8.7% and 10.6% of the polymers were solubilised with CDTA and 0.01M NaOH respectively and were constituted of arabinose (52.0 and 45.9%), uronic acids (25.8 and 29.8%), xylose (9.6 and 10.2%), galactose (6.1 and 3.9%) and glucose (6.5 and 3.8%). The cell wall polymers were also constituted of small amounts (5.6 and 7.2%) of cellulose (CEL) and of non-extractable cell wall polymers (NECW). About 16.8% and 17.2% of the polymers were solubilised with 0.5 and 1.0M NaOH and contained, respectively, 92.1 and 90.7% of glucose derived from starch (IST). The neutral sugar and polymers solubilization profiles showed that weakly bound pectins are present mainly in SPF-Co (water-soluble), CDTA and 0.01-0.1M NaOH soluble fractions. Less soluble, highly cross-linked pectins were solubilised with 4.0M NaOH. This pectin is arabinose-rich, probably highly branched and has a higher molecular weight than the pectin present in SPF-Co, CDTA and 0.01-0.1M NaOH fractions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laser cutting implementation possibilities into paper making machine was studied as the main objective of the work. Laser cutting technology application was considered as a replacement tool for conventional cutting methods used in paper making machines for longitudinal cutting such as edge trimming at different paper making process and tambour roll slitting. Laser cutting of paper was tested in 70’s for the first time. Since then, laser cutting and processing has been applied for paper materials with different level of success in industry. Laser cutting can be employed for longitudinal cutting of paper web in machine direction. The most common conventional cutting methods include water jet cutting and rotating slitting blades applied in paper making machines. Cutting with CO2 laser fulfils basic requirements for cutting quality, applicability to material and cutting speeds in all locations where longitudinal cutting is needed. Literature review provided description of advantages, disadvantages and challenges of laser technology when it was applied for cutting of paper material with particular attention to cutting of moving paper web. Based on studied laser cutting capabilities and problem definition of conventional cutting technologies, preliminary selection of the most promising application area was carried out. Laser cutting (trimming) of paper web edges in wet end was estimated to be the most promising area where it can be implemented. This assumption was made on the basis of rate of web breaks occurrence. It was found that up to 64 % of total number of web breaks occurred in wet end, particularly in location of so called open draws where paper web was transferred unsupported by wire or felt. Distribution of web breaks in machine cross direction revealed that defects of paper web edge was the main reason of tearing initiation and consequent web break. The assumption was made that laser cutting was capable of improvement of laser cut edge tensile strength due to high cutting quality and sealing effect of the edge after laser cutting. Studies of laser ablation of cellulose supported this claim. Linear energy needed for cutting was calculated with regard to paper web properties in intended laser cutting location. Calculated linear cutting energy was verified with series of laser cutting. Practically obtained laser energy needed for cutting deviated from calculated values. This could be explained by difference in heat transfer via radiation in laser cutting and different absorption characteristics of dry and moist paper material. Laser cut samples (both dry and moist (dry matter content about 25-40%)) were tested for strength properties. It was shown that tensile strength and strain break of laser cut samples are similar to corresponding values of non-laser cut samples. Chosen method, however, did not address tensile strength of laser cut edge in particular. Thus, the assumption of improving strength properties with laser cutting was not fully proved. Laser cutting effect on possible pollution of mill broke (recycling of trimmed edge) was carried out. Laser cut samples (both dry and moist) were tested on the content of dirt particles. The tests revealed that accumulation of dust particles on the surface of moist samples can take place. This has to be taken into account to prevent contamination of pulp suspension when trim waste is recycled. Material loss due to evaporation during laser cutting and amount of solid residues after cutting were evaluated. Edge trimming with laser would result in 0.25 kg/h of solid residues and 2.5 kg/h of lost material due to evaporation. Schemes of laser cutting implementation and needed laser equipment were discussed. Generally, laser cutting system would require two laser sources (one laser source for each cutting zone), set of beam transfer and focusing optics and cutting heads. In order to increase reliability of system, it was suggested that each laser source would have double capacity. That would allow to perform cutting employing one laser source working at full capacity for both cutting zones. Laser technology is in required level at the moment and do not require additional development. Moreover, capacity of speed increase is high due to availability high power laser sources what can support the tendency of speed increase of paper making machines. Laser cutting system would require special roll to maintain cutting. The scheme of such roll was proposed as well as roll integration into paper making machine. Laser cutting can be done in location of central roll in press section, before so-called open draw where many web breaks occur, where it has potential to improve runability of a paper making machine. Economic performance of laser cutting was done as comparison of laser cutting system and water jet cutting working in the same conditions. It was revealed that laser cutting would still be about two times more expensive compared to water jet cutting. This is mainly due to high investment cost of laser equipment and poor energy efficiency of CO2 lasers. Another factor is that laser cutting causes material loss due to evaporation whereas water jet cutting almost does not cause material loss. Despite difficulties of laser cutting implementation in paper making machine, its implementation can be beneficial. The crucial role in that is possibility to improve cut edge strength properties and consequently reduce number of web breaks. Capacity of laser cutting to maintain cutting speeds which exceed current speeds of paper making machines what is another argument to consider laser cutting technology in design of new high speed paper making machines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this Master’s Thesis work the rheological properties of different polysaccharide gels have been studied. The results of this study are used as a starting point for further investigations of potential applications. In order to understand rheological behavior of studied materials, the commercial hydrocolloids such as sodium carboxymethyl cellulose, xanthan gum and guar gum were used as reference and comparison material for rheological studies. As a part the rheological research the development and implementation of proper measurement methods for studied materials were carried out. In the literature review, short introductions of studied materials and application areas of rheological modifiers are summarized. In addition, basic rheological concepts and key fundamentals are explained. In the experimental part the focus was on the rheological characterization of aqueous suspensions of studied materials. Especially, gel strength and solution stability were investigated. The rheological measurements included both rotational and oscillatory measurements in different conditions, where several chemical and physical properties were measured with Anton Paar MCR302 dynamic rotational rheometer. Studied polysaccharide gels can be clearly defined to be shear thinning and thixotropic materials. They have strong gel forming properties even at low concentrations, which explains the superior thickening behavior for some of the samples. Along with rheological characterization of selected materials the factors behind different phenomena were investigated. To reveal value and potential use of polysaccharide gels the influence of various factors such as concentration, temperature and ionic strength were determined. The measurements showed a clear difference between studied materials under investigated external parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pleurotus ostreatus, worldwide known as oyster mushroom, was cultivated in banana straw using inocula produced by two different processes - liquid inoculum and the traditionally used solid inoculum. Different ratios (5, 10, 15, and 20%) were tested. Biological efficiency, yield, productivity, organic matter loss, and moisture of fruiting bodies as well as physical-chemical characteristics of banana straw were studied. Significant differences were observed for cellulose, lignin, and hemicellulose content between one and two harvests for both solid and liquid inocula. It was observed that P. ostreatus growth promoted higher degradation of lignin (80.36%), followed by hemicellulose (78.64%) and cellulose (60.37%). Significant differences between one and two harvests were also observed for the production parameters (biological efficiency and yield) for both kinds of inocula, liquid and solid. However, significant differences in productivity between harvests were observed only for solid inoculum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Starches and gums are hydrocolloids frequently used in food systems to provide proper texture, moisture, and water mobility. Starch-gum interaction in food systems can change the starch granule swelling and its gelatinization and rheological properties. In this study, the effect of the addition of xanthan gum (XG), sodium carboxymethyl cellulose (SCMC), and carrageenan (CAR) at the concentrations of the 0.15, 0.25, 0.35 and 0.45% (w/v) on the pasting, thermal, and rheological properties of cassava starch was studied. The swelling power (SP) and the scanning electron microscopy (SEM) of the starch gels were also evaluated. The results obtained showed that xanthan gum (XG) had a strong interaction with the cassava starch penetrating between starch granules causing increase in pasting viscosities, SP, storage and loss (G', and G", respectively) modulus and reduction in the setback of the starch; sodium carboxymethyl cellulose (SCMC) greatly increased the pasting viscosities, the SP, and the storage and loss (G', and G", respectively) modulus of the starch-mixtures, mainly due to its greater capacity to hold water and not due to the interaction with cassava starch. Carrageenan (CAR) did not change any of the starch properties since there was no interaction between this gum and cassava starch at the concentrations used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of technologies to extend the postharvest life of mangosteen fruit was studied and compared to storage at 25 °C/70-75%R.H (25 °C control treatment). The fruits were packed in expanded polystyrene (EPS) trays (5 fruits/tray). Five treatments were carried out at 13 °C/ 90-95% RH: application of carnauba wax coating, lecithin + CMC (carboxymethyl cellulose) coating, 50 µm LDPE (low density polyethylene) film coating, 13 µm PVC (Polyvinyl chloride), and non-coated sample (13 °C control treatment). Physicochemical analyses were performed twice a week. A statistical design was completely randomized with 8 repetitions for each treatment plus the control treatment. The results were submitted to variance analysis, and the averages compared by the Tukey test at 5% probability. Among the quality parameters analyzed, more significant differences were observed for weight loss, texture, and peel moisture content. The results showed that the maximum storage period for mangosteen at 25 °C is two weeks; while storage at13 °C can guarantee the conservation of this fruit for 25 days. Therefore, the treatment at 13 °C/90-95% RH without the use of coatings and films was more effective and economical.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing use of energy, food, and materials by the growing population in the world is leading to the situation where alternative solutions from renewable carbon resources are sought after. The growing use of plastics depends on the raw-oil production while oil refining are politically governed and required for the polymer manufacturing is not sustainable in terms of carbon footprint. The amount of packaging is also increasing. Packaging is not only utilising cardboard and paper, but also plastics. The synthetic petroleum-derived plastics and inner-coatings in food packaging can be substituted with polymeric material from the renewable resources. The trees in Finnish forests constitute a huge resource, which ought to be utilised more effectively than it is today. One underutilised component of the forests is the wood-derived hemicelluloses, although Spruce Oacetyl-galactoglucomannans (GGMs) have previously shown high potential for material applications and can be recovered in large scale. Hemicelluloses are hydrophilic in their native state, which restrains the use of them for food packaging as non-dry item. To cope with this challenge, we intended to make GGMs more hydrophobic or amphiphilic by chemical grafting and consequently with the focus of using them for barrier applications. Methods of esterification with anhydrides and cationic etherification with a trimethyl ammonium moiety were established. A method of controlled synthesis to obtain the desired properties by the means of altering temperature, reaction time, the quantity of the reagent, and even the solvent for purification of the products was developed. Numerous analytical tools, such as NMR, FTIR, SEC-MALLS/RI, MALDI-TOF-MS, RP-HPLC and polyelectrolyte titration were used to evaluate the products from different perspectives and to acquire parallel proofs of their chemical structure. Modified GGMs with different degree of substitution and the correlating level of hydrophobicity was applied as coatings on cartonboard and on nanofibrillated cellulose-GGM films to exhibit barrier functionality. The water dispersibility in processing was maintained with GGM esters with low DS. The use of chemically functionalised GGM was evaluated for the use as barriers against water, oxygen and grease for the food packaging purposes. The results show undoubtedly that GGM derivatives exhibit high potential to function as a barrier material in food packaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The degermination of corn grains by dry milling generates 5% of a fibrous residue. After segregation and micronization, corn bran becomes a potential source of dietary fiber consumption. However, its effect on iron bioavailability has not been reported in the literature. The objective of the present study was to determine the nutritional composition of corn bran and its effects on iron bioavailability using the hemoglobin depletion-repletion method in rats. The animals were divided into two groups: cellulose (control) and corn bran (experimental). The bran had high content of total dietary fiber, especially the insoluble fraction, and low phytate content. Hemoglobin uptake did not differ between groups at the end of repletion period, and the iron relative bioavailability value of the corn bran diet was 104% in comparison to that of the control group. The product evaluated proved to be a potential source of dietary fiber and it showed no negative effects on iron bioavailability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Millets are having superior nutritional qualities and health benefits; hence they can be used for supplementation of pasta. Pasta was prepared using composite flour (CF) of durum wheat semolina (96%) and carrot pomace (4%) supplemented with finger millet flour (FMF, 0-20g), pearl millet flour (PMF, 0-30g) and carboxy methyl cellulose (CMC, 2-4g). Second order polynomial described the effect of FMF, PMF and CMC on lightness, firmness, gruel loss and overall acceptability of extruded pasta products. Results indicate that an increasing proportion of finger and pearl millet flour had signed (p≤0.05) negative effect on lightness, firmness, gruel loss and overall acceptability. However, CMC addition showed significant (p≤0. 05) positive effect on firmness, overall acceptability and negative effect on gruel loss of cooked pasta samples. Numeric optimization results showed that optimum values for extruded pasta were 20g FMF, 12g PMF and 4g CMC per 100g of CF and 34ml water with 0.981 desirability. The pasta developed is nutritionally rich as it contains protein (10.16g), fat (6g), dietary fiber (16.71g), calcium (4.23mg), iron (3.99mg) and zinc (1.682mg) per 100g.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract In Turkey and several Middle East countries' people consume “leblebi” which is a traditional snack food made from chickpeas (Cicer arietinum L.). Chickpea products are highly nutritive and a cheap food for human consumption and have become an essential part of daily diets in the world. The present study aims to determine the chemical, nutritional and dietary composition of fifty leblebi samples marketed in Turkey. Protein values of the leblebi ranged from 19.4 to 23.9% dehulled and 20.3 to 20.8% for nondehulled leblebi while a value of 19.1% was recorded for chickpeas. Mineral results showed that Potassium (K) was the most abundant element in leblebi ranging from 6514 to 14431 mg/kg. The amount of dietary components neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL) and cellulose did not vary much between the samples analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tämän diplomityön tavoitteena on kehittää sopiva analyyttinen menetelmä muokatun kraft-sellukuidun substituutioasteen (DS) kvantitatiivista määrittämistä varten. Muokkauksella tarkoitetaan tässä yhteydessä joko kovalenttisesti tai adsorption avulla tapahtuvaa molekyylin kiinnittymistä sellukuidun pinnalle. Työn kirjallisuusosuudessa käsitellään lyhyesti eri muokkaustapoja ja yhdisteitä joiden avulla voidaan saavuttaa haluttuja ominaisuuksia sellusta valmistetuille lopputuotteille. Lisäksi kirjallisuusosuudessa käydään läpi käyttötarkoitukseen soveltuvimpia suoria ja epäsuoria analyysimenetelmiä. Analyysimenetelmistä kaikkein lupaavimpia testattiin työn kokeellisessa osassa. Diplomityön kokeellisessa osassa keskityttiin kehittämään muokatulle sellulle kvantitatiivista menetelmää DS:n määrittämiseksi Fourier-muunnos infrapuna-vaimennettu kokonaisheijastus (FTIR-ATR) spektrometrillä. Kirjallisuuskatsauksessa ei löytynyt yhtään dokumentoitua tutkimusta, jossa FTIR-ATR menetelmää olisi käytetty muokatun sellukuidun kvantitatiiviseen tutkimukseen. Muiden analyysimenetelmien, kuten alkuaineanalyysin, termogravimetrisen analyysin (TGA) ja valomikroskopian avulla pyrittiin tuottamaan lisätietoa muokkauksesta. Kvantitatiivisen FTIR-ATR menetelmän kehitykseen käytetyt muokatut sellukuidut olivat selluloosa-asetaattia ja selluloosa betainaattia. Saatujen tulosten perusteella muokattujen sulfiitti- ja kraft sellukuitujen DS:n kvantitatiivinen määrittäminen on mahdollista FTIR-ATR menetelmällä. Vähäinen kalibrointipisteiden määrä vaikeutti tarkan analyysimenetelmän tekemistä. Kehitetyn menetelmän suurimpina ongelmina olivat kiinteiden näytteiden heterogeenisyys sekä mahdollisten epäpuhtauksien tunnistaminen. Jatkotutkimusten avulla kehitettyä menetelmää on kuitenkin mahdollista käyttää muokattujen sellukuitujen jatkuvaan analysointiin selluteollisuudessa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The focus of the work reported in this thesis was to study and to clarify the effect of polyelectrolyte multilayer surface treatment on inkjet ink spreading, absorption and print quality. Surface sizing with a size press, film press with a pilot scale coater, and spray coating, have been used to surface treat uncoated wood-free, experimental wood-free and pigmentcoated substrates. The role of the deposited cationic (polydiallydimethylammonium chloride, PDADMAC) and anionic (sodium carboxymethyl cellulose, NaCMC) polyelectrolyte layers with and without nanosilica, on liquid absorption and spreading was studied in terms of their interaction with water-based pigmented and dye-based inkjet inks. Contact angle measurements were made in attempt to explain the ink spreading and wetting behavior on the substrate. First, it was noticed that multilayer surface treatment decreased the contact angle of water, giving a hydrophilic character to the surface. The results showed that the number of cationic-anionic polyelectrolyte layers or the order of deposition of the polyelectrolytes had a significant effect on the print quality. This was seen for example as a higher print density on layers with a cationic polyelectrolyte in the outermost layer. The number of layers had an influence on the print quality; the print density increased with increasing number of layers, although the increase was strongly dependent on ink formulation and chemistry. The use of nanosilica clearly affected the rate of absorption of polar liquids, which also was seen as a higher density of the black dye-based print. Slightly unexpected, the use of nanosilica increased the tendency for lateral spreading of both the pigmented and dye-based inks. It was shown that the wetting behavior and wicking of the inks on the polyelectrolyte coatings was strongly affected by the hydrophobicity of the substrate, as well as by the composition or structure of the polyelectrolyte layers. Coating only with a cationic polyelectrolyte was not sufficient to improve dye fixation, but it was demonstrated that a cationic-anionic-complex structure led to good water fastness. A threelayered structure gave the same water fastness values as a five-layered structure. Interestingly, the water fastness values were strongly dependent not only on the formed cation-anion polyelectrolyte complexes but also on the tendency of the coating to dissolve during immersion in water. Results showed that by optimizing the chemistry of the layers, the ink-substrate interaction can be optimized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Torrefaction is moderate thermal treatment (~200-300 °C) of biomass in an inert atmosphere. The torrefied fuel offers advantages to traditional biomass, such as higher heating value, reduced hydrophilic nature, increased its resistance to biological decay, and improved grindability. These factors could, for instance, lead to better handling and storage of biomass and increased use of biomass in pulverized combustors. In this work, we look at several aspects of changes in the biomass during torrefaction. We investigate the fate of carboxylic groups during torrefaction and its dependency to equilibrium moisture content. The changes in the wood components including carbohydrates, lignin, extractable materials and ashforming matters are also studied. And at last, the effect of K on torrefaction is investigated and then modeled. In biomass, carboxylic sites are partially responsible for its hydrophilic characteristic. These sites are degraded to varying extents during torrefaction. In this work, methylene blue sorption and potentiometric titration were applied to measure the concentration of carboxylic groups in torrefied spruce wood. The results from both methods were applicable and the values agreed well. A decrease in the equilibrium moisture content at different humidity was also measured for the torrefied wood samples, which is in good agreement with the decrease in carboxylic group contents. Thus, both methods offer a means of directly measuring the decomposition of carboxylic groups in biomass during torrefaction as a valuable parameter in evaluating the extent of torrefaction. This provides new information to the chemical changes occurring during torrefaction. The effect of torrefaction temperature on the chemistry of birch wood was investigated. The samples were from a pilot plant at Energy research Center of the Netherlands (ECN). And in that way they were representative of industrially produced samples. Sugar analysis was applied to analyze the hemicellulose and cellulose content during torrefaction. The results show a significant degradation of hemicellulose already at 240 °C, while cellulose degradation becomes significant above 270 °C torrefaction. Several methods including Klason lignin method, solid state NMR and Py-GC-MS analyses were applied to measure the changes in lignin during torrefaction. The changes in the ratio of phenyl, guaiacyl and syringyl units show that lignin degrades already at 240 °C to a small extent. To investigate the changes in the extractives from acetone extraction during torrefaction, gravimetric method, HP-SEC and GC-FID followed by GC-MS analysis were performed. The content of acetone-extractable material increases already at 240 °C torrefaction through the degradation of carbohydrate and lignin. The molecular weight of the acetone-extractable material decreases with increasing the torrefaction temperature. The formation of some valuable materials like syringaresinol or vanillin is also observed which is important from biorefinery perspective. To investigate the change in the chemical association of ash-forming elements in birch wood during torrefaction, chemical fractionation was performed on the original and torrefied birch samples. These results give a first understanding of the changes in the association of ashforming elements during torrefaction. The most significant changes can be seen in the distribution of calcium, magnesium and manganese, with some change in water solubility seen in potassium. These changes may in part be due to the destruction of carboxylic groups. In addition to some changes in water and acid solubility of phosphorous, a clear decrease in the concentration of both chlorine and sulfur was observed. This would be a significant additional benefit for the combustion of torrefied biomass. Another objective of this work is studying the impact of organically bound K, Na, Ca and Mn on mass loss of biomass during torrefaction. These elements were of interest because they have been shown to be catalytically active in solid fuels during pyrolysis and/or gasification. The biomasses were first acid washed to remove the ash-forming matters and then organic sites were doped with K, Na, Ca or Mn. The results show that K and Na bound to organic sites can significantly increase the mass loss during torrefaction. It is also seen that Mn bound to organic sites increases the mass loss and Ca addition does not influence the mass loss rate on torrefaction. This increase in mass loss during torrefaction with alkali addition is unlike what has been found in the case of pyrolysis where alkali addition resulted in a reduced mass loss. These results are important for the future operation of torrefaction plants, which will likely be designed to handle various biomasses with significantly different contents of K. The results imply that shorter retention times are possible for high K-containing biomasses. The mass loss of spruce wood with different content of K was modeled using a two-step reaction model based on four kinetic rate constants. The results show that it is possible to model the mass loss of spruce wood doped with different levels of K using the same activation energies but different pre-exponential factors for the rate constants. Three of the pre-exponential factors increased linearly with increasing K content, while one of the preexponential factors decreased with increasing K content. Therefore, a new torrefaction model was formulated using the hemicellulose and cellulose content and K content. The new torrefaction model was validated against the mass loss during the torrefaction of aspen, miscanthus, straw and bark. There is good agreement between the model and the experimental data for the other biomasses, except bark. For bark, the mass loss of acetone extractable material is also needed to be taken into account. The new model can describe the kinetics of mass loss during torrefaction of different types of biomass. This is important for considering fuel flexibility in torrefaction plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pearl millet seed is small and its size varies, making sowing more difficult. The pelleting technique increases and homogenizes seed size, but it is essential to determine the physical and physiological characteristics of pelleted seeds. The physiological analysis consisted of: first germination count, final germination, speed emergence index, and seedling emergence. Physical analysis consisted of determining the 1000-seed weight, 1000-seed volume and fragmentation. The control treatment did not receive any coating, and the other 36 treatments combined four binders: bentonite, polyvinyl acetate (PVA), polyvinylpyrrolidone (PVP) and methyl cellulose (Methocel®), and nine powder coating products: microcellulose, plaster, vermiculite, magnesium thermophosphate (Yoorin®), phytic acid, dicalcium phosphate, super simple phosphate (SS), monoamonic phosphate (MAP) and reactive phosphate. Among the materials used to form the pearl millet pellet, the most efficient binders were the polyvinyl acetate and the methyl cellulose, and as coaters, the vermiculite and the microcellulose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis the sludge of Southeastern-Finland, the companies which produce sludge and the current methods and those still in development have been surveyed. 85 % of the waste sludge from industry comes from forest industries. The sludge from municipal waste water treatment plants is mostly used as a raw material for bioplants. The sludge from forest industry is mostly incinerated. New circulation methods increase the recycling value of the waste by creating new products but they still lack a full-scale plant. The political pressure from Europe and the politics driven by the government of Finland will drive circular economy forward and thus uplifting the processing options of waste slurries. This work is divided in two parts, first contains the survey and the second contains the experimental part and the operational methods based on the survey. In the experimental part wet hard sheet waste sludge was de-watered with shaking filter and the applications for waste sludge from cellulose factory were considered. The results are, that the wet hard sheet waste sludge can be dewatered to high enough total solids content for the inteded use. Also, the cellulose waste sludge has too high Cd content in almost all of the batches to be used as a land improment.