965 resultados para Cell-survival
Resumo:
A main function attributed to the BCL2 protein is its ability to confer resistance against apoptosis. In addition to the constitutively high expression of BCL2, caused by gene rearrangement in follicular lymphomas, elevated expression of the BCL2 gene has been found in differentiating hematopoietic, neural, and epithelial tissues. To address the question of whether the expression of BCL2 is a cause or consequence of cell differentiation, we used a human neural-crest-derived tumor cell line, Paju, that undergoes spontaneous neural differentiation in vitro. The Paju cell line displays moderate expression of BCL2, the level of which increases in parallel with further neural differentiation induced by treatment with phorbol 12-myristate 13-acetate. Transfection of normal human BCL2 cDNA in sense and antisense orientations had a dramatic impact on the differentiation of the Paju cells. Overexpression of BCL2 cDNA induced extensive neurite outgrowth, even in low serum concentrations, together with an increased expression of neuron-specific enolase. Paju cells expressing the anti-sense BCL2 cDNA construct, which reduced the endogenous levels of BCL2, did not undergo spontaneous neural differentiation. These cells acquired an epithelioid morphology and up-regulated the intermediate filament protein nestin, typically present in primitive neuroectodermal cells. The manipulated levels of BCL2 did not have appreciable impact on cell survival in normal culture. Our findings demonstrate that the BCL2 gene product participates in the regulation of neural differentiation.
Resumo:
To study the effect of apoptosis on gene amplification, we have constructed HeLa S3 cell lines in which the expression of bcl-2 (BCL2) can be controlled by tetracycline in the growth medium. Induction of Bcl-2 expression caused a temporary delay of apoptosis and resulted in roughly a 3-fold increase in the frequency of resistant colonies when cells were selected with trimetrexate. This resistance was due to amplification of the dihydrofolate reductase gene. Cells grown out of the pooled resistant colonies retained the same level of resistance to trimetrexate whether Bcl-2 was induced or repressed, consistent with the theory that Bcl-2 functions by facilitating gene amplification, rather than being the resistance mechanism per se. Pretreating cells with aphidicolin is another method to increase gene amplification frequency. When Bcl-2-expressing cells were pretreated with aphidicolin, the resulting increase in gene amplification frequency was approximately the product of the increases caused by aphidicolin pretreatment or Bcl-2 expression alone, indicating that Bcl-2 increases gene amplification through a mechanism independent of that of aphidicolin pretreatment. These results are consistent with the concept that gene amplification occurs at a higher frequency during drug-induced cell cycle perturbation. Bcl-2 evidently increases the number of selected amplified colonies by prolonging cell survival during the perturbation.
Resumo:
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) binds to a high-affinity heterodimeric receptor composed of a specific alpha chain and a common beta chain (beta(c)), which is shared with the receptors for interleukins 3 and 5. Hemopoietic cell survival requires GM-CSF binding this high-affinity receptor. We have recently developed the GM-CSF mutant E21R, which selectively binds to the alpha chain and behaves as a competitive GM-CSF antagonist. We have now examined the role of E21R on the survival of hemopoietic cells and found that E21R causes apoptosis (programmed cell death) of normal and malignant cells directly in the absence of GM-CSF. The direct apoptotic effect of E21R occurred in a dose- and time-dependent manner. Apoptosis by E21R was dependent on cells expressing the high-affinity GM-CSF receptor and could be blocked by GM-CSF. Significantly, apoptosis of the cells occurred even in the presence of the survival factors granulocyte CSF and stem cell factor but was prevented by engagement of beta(c) with interleukin 3. The initiation of apoptosis required phosphorylation, transcriptional activity, and protein synthesis. These findings support a model whereby binding of E21R to the alpha chain leads to apoptosis, while beta(c) plays an important role in cell survival. This model may be applicable to other multimeric cytokine receptors and offers a novel approach for the treatment of human leukemia.
Resumo:
An increasingly large number of proteins involved in signal transduction have been identified in recent years and shown to control different steps of cell survival, proliferation, and differentiation. Among the genes recently identified at the tip of the long arm of the human X chromosome, a novel gene, C1, encodes a protein that appears to represent a newly discovered member of the group of signaling proteins involved in regulation of the small GTP binding proteins of the ras superfamily. The protein encoded by C1, p115, is synthesized predominantly in cells of hematopoietic origin. It is characterized by two regions of similarity to motifs present in known proteins: GAP and SH3 homologous regions. Its localization in a narrow cytoplasmic region just below the plasma membrane and its inhibitory effect on stress fiber organization indicate that p115 may down regulate rho-like GTPases in hematopoietic cells.
Resumo:
The maturation of 5S RNA in Escherichia coli is poorly understood. Although it is known that large precursors of 5S RNA accumulate in mutant cells lacking the endoribonuclease-RNase E, almost nothing is known about how the mature 5' and 3' termini of these molecules are generated. We have examined 5S RNA maturation in wild-type and single- or multiple-exoribonuclease-deficient cells by Northern blot and primer-extension analysis. Our results indicate that no mature 5S RNA is made in RNase T-deficient strains. Rather, 5S RNA precursors containing predominantly 2 extra nucleotides at the 3' end accumulate. Apparently, these 5S RNAs are functional inasmuch as mutant cells are viable, growing only slightly slower than wild type. Purified RNase T can remove the extra 3' residues, showing that it is directly involved in the trimming reaction. In contrast, mutations affecting other 3' exoribonucleases have no effect on 5S RNA maturation. Approximately 90% of the 5S RNAs in both wild-type and RNase T- cells contain mature 5' termini, indicating that 5' processing is independent of RNase T action. These data identify the enzyme responsible for generating the mature 3' terminus of 5S RNA molecules and also demonstrate that a completely processed 5S RNA molecule is not essential for cell survival.
Resumo:
As Neoplasias Mieloproliferativas (NMPs) se caracterizam por apresentarem acúmulo de eritrócitos, leucócitos e plaquetas morfologicamente normais e seus precursores. Nos últimos anos vários estudos buscaram conhecer os mecanismos celulares e moleculares envolvidos na fisiopatologia e evolução dessas desordens, com o intuito de encontrar marcadores de diagnóstico, prognóstico e terapias eficazes. A mutação pontual no gene que codifica a enzima Janus Kinase 2 (JAK2 V617F), presente em aproximadamente 90% dos pacientes com PV e em 50% dos pacientes com TE e MF, foi o principal achado genético anormal associado a essas doenças. Essa mutação resulta na ativação constitutiva da enzima JAK2 e na desregulação da proliferação celular e resistência à apoptose. Nosso grupo de pesquisa descreveu em PV, TE e MF a expressão alterada de genes reguladores da apoptose e dados da literatura indicam que a desregulação do ciclo celular contribui para a fisiopatologia das NMPs. Nesse projeto o intuito foi investigar a associação da via de sinalização m-TOR com as alterações do ciclo celular e via JAK/STAT nas NMPs. A via de sinalização m-TOR participa dos processos celulares de sobrevivência e proliferação. A estratégia experimental foi avaliar a expressão de genes e proteínas, reguladores da via m-TOR, em leucócitos de pacientes com NPMC e linhagens celulares JAK2+ tratadas com inibidores de JAK2 e AKT. Para determinar a relação da via m-TOR nas NMPs foi escolhido o gene eIF4E, alterado nessas doenças, para observar sua modulação diante da inibição farmacológica nas linhagens celulares JAK2 positivas. Os resultados desse estudo contribuem para a descrição de novos alvos terapêuticos dependentes e indepentendes da atividade quinase JAK2 e para o melhor conhecimento da participação da via de sinalização m-TOR na fisiopatologia das NMPs.
Resumo:
O carcinoma epidermóide bucal (CEC) é uma neoplasia maligna com alta morbidade e mortalidade e de difícil tratamento. O tratamento convencional para o CEC inclui cirurgia e radioterapia, seguida ou não de quimioterapia. Apesar de serem amplamente difundidos, esses tratamentos podem ser ineficazes para alguns CECs resistentes. A terapia fotodinâmica (PDT) oncológica tem sido utilizada para o tratamento adjuvante do CEC bucal, principalmente nos casos menos invasivos e que necessitam de redução do tumor para a ressecção cirúrgica. Contudo, semelhantemente aos tratamentos convencionais, a PDT pode também induzir o aparecimento de populações celulares resistentes, fato já descrito para carcinoma cutâneo, adenocarcinoma de cólon e adenocarcinoma mamário. A hipótese de que células de CEC bucal possam desenvolver resistência à PDT ainda não foi testada. Portanto, o objetivo deste trabalho foi verificar se células de CEC bucal (SCC9) desenvolvem resistência a ciclos repetidos de PDT mediada pelo ácido 5- aminolevulínico (5-ALA-PDT) e avaliar se nesse processo ocorre modificação da expressão de marcadores relacionados a sobrevivência celular (NF?B, Bcl-2, iNOS, mTOR e Akt). Foi utilizada linhagem de células de CEC bucal (SCC9), submetida às seguintes condições: 1) Controle - células cultivadas sem nenhum tratamento; 2) ALA - células incubadas com 5-ALA (1mM durante 4 horas); 3) LED - tratadas com iluminação LED (630nm, 5,86J/cm2, 22,5J, 150mW, 150s); 4) PDT - tratadas com 5- ALA-PDT, com os protocolos do grupo ALA e LED combinados, gerando dose letal de 90%. Inicialmente foi realizado somente um ciclo de PDT, sendo avaliada a viabilidade celular em todos os grupos após 24, 48, 72 e 120h da irradiação. Também foi realizado ensaio de detecção da fragmentação de DNA (TUNEL) e análise por imunofluorescência da expressão das proteínas NF?B, Bcl-2, iNOS, pmTOR e pAkt nas células viáveis. Como resultado desse primeiro tratamento com 5-ALA-PDT, observou-se que as células sobreviventes ao tratamento apresentaram intensa marcação para pmTOR e exibiram potencial de crescimento durante o período analisado. Após esses ensaios, as células que sobreviveram a essa primeira sessão foram coletadas, replaqueadas e novamente cultivadas, sendo então submetidas a novo ciclo de 5-ALA-PDT. Esse processo foi realizado 5 vezes, variando-se a intensidade de irradiação à medida que se observava aumento na viabilidade celular. As populações celulares que exibiram viabilidade 1,5 vezes maior do que a detectada no primeiro ciclo PDT foram consideradas resistentes ao tratamento. Os mesmos marcadores analisados no primeiro ciclo de PDT foram novamente avaliados nas populações resistentes. Foram obtidas quatro populações celulares resistentes, com viabilidade de até 4,6 vezes maior do que a do primeiro ciclo de PDT e irradiação com LED que variou de 5,86 a 9,38J/cm2. A população mais resistente apresentou ainda menor intensidade de protoporfirina IX, maior capacidade de migração e modificação na morfologia nuclear. As populações resistentes testadas exibiram aumento na expressão de pNF?B, iNOS, pmTOR e pAkt, mas não da proteína anti-apoptótica Bcl- 2. Ensaio in vivo foi também conduzido em ratos, nos quais CEC bucal foi quimicamente induzido e tratado ou não com 5-ALA-PDT. Houve intensa expressão imuno-histoquímica das proteínas pNF?B, Bcl-2, iNOS, pmTOR e pAkt em relação ao controle não tratado, nas células adjacentes à área de necrose provocada pela PDT. Concluiu-se que as células de CEC bucal tratadas com 5-ALA-PDT a uma dose de 90% de letalidade desenvolveram viabilidade crescente após ciclos repetidos do tratamento, bem como exibiram superexpressão de proteínas relacionadas à sobrevivência celular, tanto in vitro quanto in vivo. Esses fatos, aliados à maior capacidade de migração, sugerem a aquisição de fenótipo de resistência à 5-ALAPDT. Esse aspecto deve ser cuidadosamente considerado no momento da instituição dessa terapia para os CECs bucais.
Resumo:
Background: Retinal ganglion cell death underlies the pathophysiology of neurodegenerative disorders such as glaucoma or optic nerve trauma. To assess the potential influence of photoreceptor degeneration on retinal ganglion cell survival, and to evaluate functionality, we took advantage of the optic nerve section mouse model. Methods: Surviving retinal ganglion cells were double-stained by exposing both superior colliculi to fluorogold, and by applying dextran-tetramethylrhodamine to the injured optic nerve stump. To assess retinal function in wild-type animals, electroretinograms were recorded on the injured eyes and compared with the contralateral. Similar labelling experiments were carried out on retinal degeneration 1 mice. Surviving retinal ganglion cells were counted 21 days after axotomy and compared with wild-type mice. No functional experiments were performed on retinal degeneration 1 animals because they do not develop normal electroretinographical responses. Results: A significant decrease in retinal ganglion cell density was observed 6 days after axotomy in the wild type. Functional studies revealed that, in scotopic conditions, axotomy induced a significant amplitude decrease in the positive scotopic threshold response component of the electroretinogram. Such decrease paralleled cell loss, suggesting it may be an appropriate technique to evaluate functionality. When comparing retinal ganglion cell densities in wild-type and retinal degeneration 1 mice, a significant greater survival was observed on the latter. Conclusions: After optic nerve section, electroretinographical recordings exhibited a progressive decrease in the amplitude of the positive scotopic threshold response wave, reflecting ganglion cell loss. Interestingly, rod degeneration seemed, at least initially, to protect from axotomy-driven damage.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Assessment of protein dynamics in living cells is crucial for understanding their biological properties and functions. The SNAP-tag, a self labeling suicide enzyme, presents a tool with unique features that can be adopted for determining protein dynamics in living cells. Here we present detailed protocols for the use of SNAP in fluorescent pulse-chase and quench-chase-pulse experiments. These time-slicing methods provide powerful tools to assay and quantify the fate and turnover rate of proteins of different ages. We cover advantages and pitfalls of SNAP-tagging in fixed- and live-cell studies and evaluate the recently developed fast-acting SNAPf variant. In addition, to facilitate the analysis of protein turnover datasets, we present an automated algorithm for spot recognition and quantification.
Resumo:
Three water-soluble carboxy nitroxide antioxidants, 5-carboxy-1,1,3,3-tetramethylisoindolin-2-yloxyl, 4-carboxy-2,2,6,6-tetramethylpiperidin-1-yloxyl, and 3-carboxy-2,2,5,5-tetramethylpyrrolidin-1-yloxyl, show significant impact on the postirradiation survival rates of ataxia telangiectasia (A-T) cells compared to normal cells, an assay which represents a model for understanding the impact of ROS damage on the A-T phenotype. The effects of these antioxidants are much more significant than those of vitamin E or Trolox (a water-soluble vitamin E analog), studied using the same cell survival model. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Chronic alcohol exposure induces lasting behavioral changes, tolerance, and dependence. This results, at least partially, from neural adaptations at a cellular level. Previous genome-wide gene expression studies using pooled human brain samples showed that alcohol abuse causes widespread changes in the pattern of gene expression in the frontal and motor cortices of human brain. Because these studies used pooled samples, they could not determine variability between different individuals. In the present study, we profiled gene expression levels of 14 postmortem human brains (seven controls and seven alcoholic cases) using cDNA microarrays (46 448 clones per array). Both frontal cortex and motor cortex brain regions were studied. The list of genes differentially expressed confirms and extends previous studies of alcohol responsive genes. Genes identified as differentially expressed in two brain regions fell generally into similar functional groups, including metabolism, immune response, cell survival, cell communication, signal transduction and energy production. Importantly, hierarchical clustering of differentially expressed genes accurately distinguished between control and alcoholic cases, particularly in the frontal cortex.
Resumo:
Background: Burn sepsis is a leading cause of mortality and morbidity in patients with major burns. The use of topical antimicrobial agents has helped improve the survival of these patients. Silvazine (Sigma Pharmaceuticals, Melbourne, Australia) (1% silver sulphadiazine and 0.2% chlorhexidine digluconate) is used exclusively in Australasia, and there is no published study on its cytotoxicity. This study compared the relative cytotoxicity of Silvazine with 1% silver sulphadiazine (Flamazine (Smith & Nephew Healthcare. Hull. UK)) and a silver-based dressing (Acticoat (Smith & Nephew Healthcare, Hull, UK)). Methods: Dressings were applied to the centre of culture plates that were then seeded with keratinocytes at an estimated 25% confluence. The plates were incubated for 72 h and culture medium and dressings then removed. Toluidine blue was added to stain the remaining keratinocytes. Following removal of the dye, the plates were photographed under standard conditions and these digital images were analysed using image analysis software. Data was analysed using Student's t-test. Results: In the present study, Silvazine is the most cytotoxic agent. Seventy-two hour exposure to Silvazine in the present study results in almost no keratinocyte survival at all and a highly statistically significant reduction in cell survival relative to control, Acticoat and Flamazine (P
Resumo:
Ischaemia-reperfusion and toxic injury are leading causes of acute renal failure (ARF). Both of these injury initiators use secondary mediators of damage in oxygen-derived free radicals. Several recent publications about ischaemia-reperfusion and toxin-induced ARF have indicated that plasma membrane structures called caveolae, and their proteins, the caveolins, are potential participants in protecting or repairing renal tissues. Caveolae and caveolins have previously been ascribed many functions, a number of which may mediate cell death or survival of injured renal cells. This review proposes possible pathophysiological mechanisms by which altered caveolin-1 expression and localization may affect renal cell survival following oxidative stress.