959 resultados para CRITICAL LAYER THICKNESS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

At present time, there is a lack of knowledge on the interannual climate-related variability of zooplankton communities of the tropical Atlantic, central Mediterranean Sea, Caspian Sea, and Aral Sea, due to the absence of appropriate databases. In the mid latitudes, the North Atlantic Oscillation (NAO) is the dominant mode of atmospheric fluctuations over eastern North America, the northern Atlantic Ocean and Europe. Therefore, one of the issues that need to be addressed through data synthesis is the evaluation of interannual patterns in species abundance and species diversity over these regions in regard to the NAO. The database has been used to investigate the ecological role of the NAO in interannual variations of mesozooplankton abundance and biomass along the zonal array of the NAO influence. Basic approach to the proposed research involved: (1) development of co-operation between experts and data holders in Ukraine, Russia, Kazakhstan, Azerbaijan, UK, and USA to rescue and compile the oceanographic data sets and release them on CD-ROM, (2) organization and compilation of a database based on FSU cruises to the above regions, (3) analysis of the basin-scale interannual variability of the zooplankton species abundance, biomass, and species diversity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A tephrochronology of the past 5 Ma is constructed with ash layers recovered from Neogene sediments during drilling at ODP Leg 121 Site 758 on northern Ninetyeast Ridge. The several hundred tephra layers observed in the first 80 m of cores range in thickness from a few millimeters to 34 cm. Seventeen tephra layers, at least 1 cm thick, were sampled and analyzed for major elements. Relative ages for the ash layers are estimated from the paleomagnetic and d18O chronostratigraphy. The ash layers comprise about 1.7% by volume of the sediments recovered in the first 72 m. The median grain size of the ashes is about 75 ?m, with a maximum of 150 ?m. The ash consists of rhyolitic bubble junction and pumice glass shards. Blocky and platy shards are in even proportion (10%-30%) and are dominated by bubble wall shards (70%-90%). The crystal content of the layers is always less than 2%, with Plagioclase and alkali feldspar present in nearly every layer. Biotite was observed only in the thickest layers. The major element compositions of glass and feldspar reflect fractionation trends. Three groupings of ash layers suggest different provenances with distinct magmatic systems. Dating by d18O and paleomagnetic reversals suggests major marine ash-layer-producing eruptions (marine tephra layers > 1 cm in thickness) occur roughly every approximately 414,000 yr. This value correlates well with landbased studies and dates of Pleistocene Sumatran tuffs (average 375,000-yr eruptive interval). Residence times of the magmatic systems defined by geochemical trends are 1.583, 2.524, and 1.399 Ma. The longest time interval starts with the least differentiated magma. The Sunda Arc, specifically Sumatra, is inferred to be the source region for the ashes. Four of the youngest five ash layers recovered correlate in time and in major element chemistry to ashes observed on land at the Toba caldera.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Soil-forming processes and soil development rates are compared and contrasted on glacial deposits in two adjacent and coeval valleys of the Quartermain Mountains, which are important because they display Miocene glacial stratigraphy and some of the oldest landforms in the McMurdo Dry Valleys. More than 100 soil profiles were examined on seven drift sheets ranging from 115 000 to greater than 11.3 million years in age in Beacon Valley and Arena Valley. Although the two valleys contain drifts of similar age, they differ markedly in ice content of the substrate. Whereas Arena Valley generally has 'dry-frozen' permafrost in the upper 1 m and minimal patterned ground, Beacon Valley contains massive ice buried by glacial drift and ice-cored rock glaciers and has ice-cemented permafrost in the upper 1 m and considerable associated patterned ground. Arena Valley soils have twice the rate of profile salt accumulation than Beacon Valley soils, because of lower available soil water and minimal cryoturbation. The following soil properties increase with age in both valleys: weathering stage, morphogenetic salt stage, thickness of the salt pan, the quantity of profile salts, electrical conductivity of the horizon of maximum salt enrichment, and depth of staining. Whereas soils less than 200 000 years and older soils derived from sandstone-rich ground moraine are Typic Anhyorthels and Anhyturbels, soils of early Quaternary and older age, particularly on dolerite-rich drifts, are Petronitric Anhyorthels. Arena Valley has the highest pedodiversity recorded in the McMurdo Dry Valleys. The soils of the Quartermain Mountains are the only soils in the McMurdo Dry Valleys known to contain abundant nitrates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Leg 164 of the Ocean Drilling Program was designed to investigate the occurrence of gas hydrate in the sedimentary section beneath the Blake Ridge on the southeastern continental margin of North America. Sites 994, 995, and 997 were drilled on the Blake Ridge to refine our understanding of the in situ characteristics of natural gas hydrate. Because gas hydrate is unstable at surface pressure and temperature conditions, a major emphasis was placed on the downhole logging program to determine the in situ physical properties of the gas hydrate-bearing sediments. Downhole logging tool strings deployed on Leg 164 included the Schlumberger quad-combination tool (NGT, LSS/SDT, DIT, CNT-G, HLDT), the Formation MicroScanner (FMS), and the Geochemical Combination Tool (GST). Electrical resistivity (DIT) and acoustic transit-time (LSS/SDT) downhole logs from Sites 994, 995, and 997 indicate the presence of gas hydrate in the depth interval between 185 and 450 mbsf on the Blake Ridge. Electrical resistivity log calculations suggest that the gas hydrate-bearing sedimentary section on the Blake Ridge may contain between 2 and 11 percent bulk volume (vol%) gas hydrate. We have determined that the log-inferred gas hydrates and underlying free-gas accumulations on the Blake Ridge may contain as much as 57 trillion m**3 of gas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A study was performed from August 11 to September 3, 1998 in the Pechora Sea, which covered the shallow-water southeastern Barents Sea. Chlorophyll a concentration in the surface layer (C_chls) ranged from 0.08 to 1.15 mg/m**3, while primary production in the water column (C_phs) Varied from 17 to 170 mg C/m**2/day, aver. 75 mg C/m**2/day. Transition from central deep-water (60-190 m) parts of the sea to coastal shallow-water (15-30 m) parts was accompanied by increase of average C_chls values 2.4 times (from 0.21 to 0.51 mg/m**3) and decrease in average C_phs 1.6 times (from 95 to 58 mg C/m**2/day); the latter, in turn, resulted from decrease in thickness of the photosynthetic layer (H_ph) from 55 to 12 m and its relative transparency (H) from 17 to 4 m. This sharp change in H value and absence of a positive feedback between C_chls and C_phs were most probably related to rapid increase in the role of yellow substance and suspended matter in absorption of solar radiation in coastal waters. In sea areas with depths greater than 30 m a deep chlorophyll maximum was observed; at most of stations it located in the 20-35 m deep layer during illumination in photosynthetic active radiation range comprising 0.8-1.5% of its surface value. Parameters of photosynthetic light curves in these regions indicate participation of shade-adapted flora in formation of the deep chlorophyll maximum. In coastal waters characterized by a relatively uniform chlorophyll distribution over the water column no light adaptation of phytoplankton to efficient utilization of low irradiation for photosynthesis was encountered. Thus, a conclusion was made that combination of extremely low values of C_phs and H_ph makes the pelagic ecosystem of the Pechora Sea coastal regions very sensitive to anthropogenic impacts that may increase water turbidity.