976 resultados para CMOS transistor


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A polymorphic ASIC is a runtime reconfigurable hardware substrate comprising compute and communication elements. It is a ldquofuture proofrdquo custom hardware solution for multiple applications and their derivatives in a domain. Interoperability between application derivatives at runtime is achieved through hardware reconfiguration. In this paper we present the design of a single cycle Network on Chip (NoC) router that is responsible for effecting runtime reconfiguration of the hardware substrate. The router design is optimized to avoid FIFO buffers at the input port and loop back at output crossbar. It provides virtual channels to emulate a non-blocking network and supports a simple X-Y relative addressing scheme to limit the control overhead to 9 bits per packet. The 8times8 honeycomb NoC (RECONNECT) implemented in 130 nm UMC CMOS standard cell library operates at 500 MHz and has a bisection bandwidth of 28.5 GBps. The network is characterized for random, self-similar and application specific traffic patterns that model the execution of multimedia and DSP kernels with varying network loads and virtual channels. Our implementation with 4 virtual channels has an average network latency of 24 clock cycles and throughput of 62.5% of the network capacity for random traffic. For application specific traffic the latency is 6 clock cycles and throughput is 87% of the network capacity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ever-increasing demand for faster computers in various areas, ranging from entertaining electronics to computational science, is pushing the semiconductor industry towards its limits on decreasing the sizes of electronic devices based on conventional materials. According to the famous law by Gordon E. Moore, a co-founder of the world s largest semiconductor company Intel, the transistor sizes should decrease to the atomic level during the next few decades to maintain the present rate of increase in the computational power. As leakage currents become a problem for traditional silicon-based devices already at sizes in the nanometer scale, an approach other than further miniaturization is needed to accomplish the needs of the future electronics. A relatively recently proposed possibility for further progress in electronics is to replace silicon with carbon, another element from the same group in the periodic table. Carbon is an especially interesting material for nanometer-sized devices because it forms naturally different nanostructures. Furthermore, some of these structures have unique properties. The most widely suggested allotrope of carbon to be used for electronics is a tubular molecule having an atomic structure resembling that of graphite. These carbon nanotubes are popular both among scientists and in industry because of a wide list of exciting properties. For example, carbon nanotubes are electronically unique and have uncommonly high strength versus mass ratio, which have resulted in a multitude of proposed applications in several fields. In fact, due to some remaining difficulties regarding large-scale production of nanotube-based electronic devices, fields other than electronics have been faster to develop profitable nanotube applications. In this thesis, the possibility of using low-energy ion irradiation to ease the route towards nanotube applications is studied through atomistic simulations on different levels of theory. Specifically, molecular dynamic simulations with analytical interaction models are used to follow the irradiation process of nanotubes to introduce different impurity atoms into these structures, in order to gain control on their electronic character. Ion irradiation is shown to be a very efficient method to replace carbon atoms with boron or nitrogen impurities in single-walled nanotubes. Furthermore, potassium irradiation of multi-walled and fullerene-filled nanotubes is demonstrated to result in small potassium clusters in the hollow parts of these structures. Molecular dynamic simulations are further used to give an example on using irradiation to improve contacts between a nanotube and a silicon substrate. Methods based on the density-functional theory are used to gain insight on the defect structures inevitably created during the irradiation. Finally, a new simulation code utilizing the kinetic Monte Carlo method is introduced to follow the time evolution of irradiation-induced defects on carbon nanotubes on macroscopic time scales. Overall, the molecular dynamic simulations presented in this thesis show that ion irradiation is a promisingmethod for tailoring the nanotube properties in a controlled manner. The calculations made with density-functional-theory based methods indicate that it is energetically favorable for even relatively large defects to transform to keep the atomic configuration as close to the pristine nanotube as possible. The kinetic Monte Carlo studies reveal that elevated temperatures during the processing enhance the self-healing of nanotubes significantly, ensuring low defect concentrations after the treatment with energetic ions. Thereby, nanotubes can retain their desired properties also after the irradiation. Throughout the thesis, atomistic simulations combining different levels of theory are demonstrated to be an important tool for determining the optimal conditions for irradiation experiments, because the atomic-scale processes at short time scales are extremely difficult to study by any other means.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FET based MEMS microphones comprise of a flexible diaphragm that works as the moving gate of the transistor. The integrated electromechanical transducer can be made more sensitive to external sound pressure either by increasing the mechanical or the electrical sensitivities. We propose a method of increasing the overall sensitivity of the microphone by increasing its electrical sensitivity. The proposed microphone uses the transistor biased in the sub-threshold region where the drain current depends exponentially on the difference between the gate-to-source voltage and the threshold voltage. The device is made more sensitive without adding any complexity in the mechanical design of the diaphragm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this brief, we present a new circuit technique to generate the sigmoid neuron activation function (NAF) and its derivative (DNAF). The circuit makes use of transistor asymmetry in cross-coupled differential pair to obtain the derivative. The asymmetry is introduced through external control signal, as and when required. This results in the efficient utilization of the hard-ware by realizing NAF and DNAF using the same building blocks. The operation of the circuit is presented in the subthreshold region for ultra low-power applications. The proposed circuit has been experimentally prototyped and characterized as a proof of concept on the 1.5-mum AMI technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new performance metric, Peak-Error Ratio (PER) has been presented to benchmark the performance of a class of neuron circuits to realize neuron activation function (NAF) and its derivative (DNAF). Neuron circuits, biased in subthreshold region, based on the asymmetric cross-coupled differential pair configuration and conventional configuration of applying small external offset voltage at the input have been compared on the basis of PER. It is shown that the technique of using transistor asymmetry in a cross-coupled differential pair performs on-par with that of applying external offset voltage. The neuron circuits have been experimentally prototyped and characterized as a proof of concept on the 1.5 mu m AMI technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Field-effect transistor characteristics of few-layer graphenes prepared by several methods have been investigated in comparison with those of single-layer graphene prepared by the in situ reduction of single-layer graphene oxide. Ambipolar features have been observed with single-layer graphene and n-type behaviour with all the few-layer graphenes, the best characteristics being found with the graphene possessing 2-3 layers prepared by arc-discharge of graphite in hydrogen. FETs based on boron and nitrogen doped graphene show n-type and p-type behaviour respectively. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new performance metric, Peak-Error Ratio (PER) has been presented to benchmark the performance of a class of neuron circuits to realize neuron activation function (NAF) and its derivative (DNAF). Neuron circuits, biased in subthreshold region, based on the asymmetric cross-coupled differential pair configuration and conventional configuration of applying small external offset voltage at the input have been compared on the basis of PER. It is shown that the technique of using transistor asymmetry in a cross-coupled differential pair performs on-par with that of applying external offset voltage. The neuron circuits have been experimentally prototyped and characterized as a proof of concept on the 1.5 mu m AMI technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous techniques used for solving the 1-D Poisson equation ( PE) rigorously for long-channel asymmetric and independent double-gate (IDG) transistors result in potential models that involve multiple intercoupled implicit equations. As these equations need to be solved self-consistently, such potential models are clearly inefficient for compact modeling. This paper reports a different rigorous technique for solving the same PE by which one can obtain the potential profile of a generalized IDG transistor that involves a single implicit equation. The proposed Poisson solution is shown to be computationally more efficient for circuit simulation than the previous solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this letter, we propose the design and simulation study of a novel transistor, called HFinFET, which is a hybrid of an HEMT and a FinFET, to obtain excellent performance and good OFF-state control. Followed by the description of the design, 3-D device simulation has been performed to predict the characteristics of the device. The device has been benchmarked against published state of the art HEMT as well as planar and nonplanar Si n-MOSFET data of comparable gate length using standard benchmarking techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Continuous common mode feedback (CMFB) circuits having high input impedance and low distortion are proposed. The proposed circuits are characterized for 0.18 mu m CMOS process with 1.8 V supply. Simulation results indicate that the proposed common mode detector consumes no standby power and CMFB circuit consumes 27-34% less power than previous high swing CMFB circuits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

H.264 video standard achieves high quality video along with high data compression when compared to other existing video standards. H.264 uses context-based adaptive variable length coding (CAVLC) to code residual data in Baseline profile. In this paper we describe a novel architecture for CAVLC decoder including coeff-token decoder, level decoder total-zeros decoder and run-before decoder UMC library in 0.13 mu CMOS technology is used to synthesize the proposed design. The proposed design reduces chip area and improves critical path performance of CAVLC decoder in comparison with [1]. Macroblock level (including luma and chroma) pipeline processing for CAVLC is implemented with an average of 141 cycles (including pipeline buffering) per macroblock at 250MHz clock frequency. To compare our results with [1] clock frequency is constrained to 125MHz. The area required for the proposed architecture is 17586 gates, which is 22.1% improvement in comparison to [1]. We obtain a throughput of 1.73 * 10(6) macroblocks/second, which is 28% higher than that reported in [1]. The proposed design meets the processing requirement of 1080HD [5] video at 30frames/seconds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a unified model for large signal and small signal non-quasi-static analysis of long channel symmetric double gate MOSFET. The model is physics based and relies only on the very basic approximation needed for a charge-based model. It is based on the EKV formalism Enz C, Vittoz EA. Charge based MOS transistor modeling. Wiley; 2006] and is valid in all regions of operation and thus suitable for RF circuit design. Proposed model is verified with professional numerical device simulator and excellent agreement is found. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new Schmitt trigger circuit based on the lambda bipolar transistor is presented. This circuit which exhibits a hysteresis in its transfer characteristic seems to use a smaller chip area than many of the circuits proposed so far.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we focus on the performance of a nanowire field-effect transistor in the ultimate quantum capacitance limit (UQCL) (where only one subband is occupied) in the presence of interface traps (D-it), parasitic capacitance (C-L), and source/drain series resistance (R-s,R-d), using a ballistic transport model and compare the performance with its classical capacitance limit (CCL) counterpart. We discuss four different aspects relevant to the present scenario, namely: 1) gate capacitance; 2) drain-current saturation; 3) subthreshold slope; and 4) scaling performance. To gain physical insights into these effects, we also develop a set of semianalytical equations. The key observations are as follows: 1) A strongly energy-quantized nanowire shows nonmonotonic multiple-peak C-V characteristics due to discrete contributions from individual subbands; 2) the ballistic drain current saturates better in the UQCL than in the CCL, both in the presence and absence of D-it and R-s,R-d; 3) the subthreshold slope does not suffer any relative degradation in the UQCL compared to the CCL, even with Dit and R-s,R-d; 4) the UQCL scaling outperforms the CCL in the ideal condition; and 5) the UQCL scaling is more immune to R-s,R-d, but the presence of D-it and C-L significantly degrades the scaling advantages in the UQCL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A bi-level voltage drive circuit for step motors that can provide the required high starting torque is described. In this circuit, microprocessor 8085 and parallel port interface 8255 are used for generating the code sequence. The inverter buffer 74LS06 provides enough drive to a darlington pair transistor. The comparator LM339 is used to compare the required voltage for step motor with the set value. This circuit can be effectively used for step motors having maximum rated current of less than 15 A with proper heat sink.