927 resultados para Automação - Aplicações industriais
Resumo:
During a petroleum well production process, It is common the slmultaneous oil and water production, in proportion that can vary from 0% up to values close to 100% of water. Moreover, the production flows can vary a lot, depending on the charaeteristies of eaeh reservoir. Thus being, the meters used in field for the flow and BSW (water in the oil) measurement must work well in wide bands of operation. For the evaluation of the operation of these meters, in the different operation conditions, a Laboratory will be built in UFRN, that has for objective to evaluate in an automatic way the processes of flow and BSW petroleum measurement, considering different operation conditions. The good acting of these meters is fundamental for the accuracy of the measures of the volumes of production liquid and rude of petroleum. For the measurement of this production, the petroleum companies use meters that should indicate the values with tha largast possible accuracy and to respect a series of conditions and minimum requirements, estabelished by the united Entrance ANP/INMETRO 19106/2000. The laboratory of Evafuation of the Processes of Measurement of Flow and BSW to be built will possess an oil tank basically, a tank of water, besides a mixer, a tank auditor, a tank for separation and a tank of residues for discard of fluids, fundamental for the evaluation of the flow metars and BSW. The whole process will be automated through the use of a Programmable Logicat Controller (CLP) and of a supervisory system.This laboratory besides allowing the evaluation of flow meters and BSW used by petroleum companies, it will make possible the development of researches related to the automation. Besides, it will be a collaborating element to the development of the Computer Engineering and Automation Department, that it will propitiate the evolution of the faculty and discente, qualifying them for a job market in continuous growth. The present work describes the project of automation of the laboratory that will be built at of UFRN. The system will be automated using a Programmable Logical Controller and a supervisory system. The programming of PLC and the screens of the supervisory system were developed in this work
Resumo:
The industries are getting more and more rigorous, when security is in question, no matter is to avoid financial damages due to accidents and low productivity, or when it s related to the environment protection. It was thinking about great world accidents around the world involving aircrafts and industrial process (nuclear, petrochemical and so on) that we decided to invest in systems that could detect fault and diagnosis (FDD) them. The FDD systems can avoid eventual fault helping man on the maintenance and exchange of defective equipments. Nowadays, the issues that involve detection, isolation, diagnose and the controlling of tolerance fault are gathering strength in the academic and industrial environment. It is based on this fact, in this work, we discuss the importance of techniques that can assist in the development of systems for Fault Detection and Diagnosis (FDD) and propose a hybrid method for FDD in dynamic systems. We present a brief history to contextualize the techniques used in working environments. The detection of fault in the proposed system is based on state observers in conjunction with other statistical techniques. The principal idea is to use the observer himself, in addition to serving as an analytical redundancy, in allowing the creation of a residue. This residue is used in FDD. A signature database assists in the identification of system faults, which based on the signatures derived from trend analysis of the residue signal and its difference, performs the classification of the faults based purely on a decision tree. This FDD system is tested and validated in two plants: a simulated plant with coupled tanks and didactic plant with industrial instrumentation. All collected results of those tests will be discussed
Resumo:
In this work we present a new clustering method that groups up points of a data set in classes. The method is based in a algorithm to link auxiliary clusters that are obtained using traditional vector quantization techniques. It is described some approaches during the development of the work that are based in measures of distances or dissimilarities (divergence) between the auxiliary clusters. This new method uses only two a priori information, the number of auxiliary clusters Na and a threshold distance dt that will be used to decide about the linkage or not of the auxiliary clusters. The number os classes could be automatically found by the method, that do it based in the chosen threshold distance dt, or it is given as additional information to help in the choice of the correct threshold. Some analysis are made and the results are compared with traditional clustering methods. In this work different dissimilarities metrics are analyzed and a new one is proposed based on the concept of negentropy. Besides grouping points of a set in classes, it is proposed a method to statistical modeling the classes aiming to obtain a expression to the probability of a point to belong to one of the classes. Experiments with several values of Na e dt are made in tests sets and the results are analyzed aiming to study the robustness of the method and to consider heuristics to the choice of the correct threshold. During this work it is explored the aspects of information theory applied to the calculation of the divergences. It will be explored specifically the different measures of information and divergence using the Rényi entropy. The results using the different metrics are compared and commented. The work also has appendix where are exposed real applications using the proposed method
Resumo:
ln this work, it was deveIoped a parallel cooperative genetic algorithm with different evolution behaviors to train and to define architectures for MuItiIayer Perceptron neural networks. MuItiIayer Perceptron neural networks are very powerful tools and had their use extended vastIy due to their abiIity of providing great resuIts to a broad range of appIications. The combination of genetic algorithms and parallel processing can be very powerful when applied to the Iearning process of the neural network, as well as to the definition of its architecture since this procedure can be very slow, usually requiring a lot of computational time. AIso, research work combining and appIying evolutionary computation into the design of neural networks is very useful since most of the Iearning algorithms deveIoped to train neural networks only adjust their synaptic weights, not considering the design of the networks architecture. Furthermore, the use of cooperation in the genetic algorithm allows the interaction of different populations, avoiding local minima and helping in the search of a promising solution, acceIerating the evolutionary process. Finally, individuaIs and evolution behavior can be exclusive on each copy of the genetic algorithm running in each task enhancing the diversity of populations
Resumo:
In the two last decades of the past century, following the consolidation of the Internet as the world-wide computer network, applications generating more robust data flows started to appear. The increasing use of videoconferencing stimulated the creation of a new form of point-to-multipoint transmission called IP Multicast. All companies working in the area of software and the hardware development for network videoconferencing have adjusted their products as well as developed new solutionsfor the use of multicast. However the configuration of such different solutions is not easy done, moreover when changes in the operational system are also requirede. Besides, the existing free tools have limited functions, and the current comercial solutions are heavily dependent on specific platforms. Along with the maturity of IP Multicast technology and with its inclusion in all the current operational systems, the object-oriented programming languages had developed classes able to handle multicast traflic. So, with the help of Java APIs for network, data bases and hipertext, it became possible to the develop an Integrated Environment able to handle multicast traffic, which is the major objective of this work. This document describes the implementation of the above mentioned environment, which provides many functions to use and manage multicast traffic, functions which existed only in a limited way and just in few tools, normally the comercial ones. This environment is useful to different kinds of users, so that it can be used by common users, who want to join multimedia Internet sessions, as well as more advenced users such engineers and network administrators who may need to monitor and handle multicast traffic
Resumo:
ln this work, planar quasi- Y agi antennas are investigated based on the concept of the classic Y agi_Uda antennas. These antennas represent improvements on the topologies of the antennas existing printed because they present characteristics of broad bandwidth, excellent radiation diagrams and simple construction. New configurations are adapted for the driver of the antennas, introducing patches elements into the driver. These new configurations are named Patches Elements Anteonas (PEA). This adaptation is obtained from simulations that are executed usiog the software C8T Microwave 8tudio 5. After doing the optimizations, procedures for construction and measurement ofthe prototypes are executed in order to improve the performance of the antennas in such way that they could be used in wireless communication applications, such as Bluetooth, WLAN' s and Wi-Fi. Next, the quasi- Y agi antennas are studied in order to implement them in arrangements. The arrangements construction is based 00 the best driver configuration of the antenna developed in this work. First, a linear arrangement composed by two elements of quasi¬Yagi antennas is constructed in such way that the radiation characteristics and the mutual coupling effects could be analyzed. After that, a 90° angle arrangement composed by two elements is studied to observe the effect of circular polarization. Experiments are executed in order to evaluate the arrangements performance. The experimental results show that the analysis made in this work is efficient and accurate. The numerical values obtained for the analyzed parameters of each structure developed are compared with the experimental values. 80, it is possible to observe a good concordance between them. Finally, some future works proposals are presented
Resumo:
One of the objectives of this work is the ana1ysis of planar structures using the PBG (photonic Bandgap), a new method of controlling propagation of electromagnetic waves in devices with dielectrics. Here the basic theory of these structures will be presented, as well as applications and determination of certain parameters. In this work the analysis will be performed concerning PBG structures, including the basic theory and applications in planar structures. Considerations are made related to the implementation of devices. Here the TTL (Transverse Transmission Line) method is employed, characterized by the simplicity in the treatment of the equations that govern the propagation of electromagnetic waves in the structure. In this method, the fields in x and z are expressed in function of the fields in the traverse direction y in FTD (Fourier Transform Domain). This method is useful in the determination of the complex propagation constant with application in high frequency and photonics. In this work structures will be approached in micrometric scale operating in frequencies in the range of T erahertz, a first step for operation in the visible spectra. The mathematical basis are approached for the determination of the electromagnetic fields in the structure, based on the method L TT taking into account the dimensions approached in this work. Calculations for the determination of the constant of complex propagation are also carried out. The computational implementation is presented for high frequencies. at the first time the analysis is done with base in open microstrip lines with semiconductor substrate. Finally, considerations are made regarding applications ofthese devices in the area of telecommunications, and suggestions for future
Resumo:
The present work deals with the ana1ysis of microstrip patch antennas printed on tapered dielectric substrates. We investigate the influence ofthe substrate height variations on the properties of configurations such as microstrip patch antennas, microstrip patch antennas with overlay and suspendeô microstrip patch antennas. The dielectric substrates can be isotropic or anisotropic ones. This accurate analysis is based on the full-wave formulation. It is carried out initially for the determination of the impedance matrix, through the use of the spectral¬domain immitance approach. We use a model based on a segmentation of the considered line into uniform microstrip line subsections. Normalized phase constants and characteristic impedances are obtained by means of the Galerkin numerical technique. Then, the cascaded combination of the uniform microstrip subsections are analyzed through an interactive procedure. Numerical results are presented for the input reflection coefficient, voltage standing wave ratio, resonant frequency, and radiation pattems ofthe E_plane and H-plane diagrams. It is found that the variations in the substrate height profile produce a great influence on the bandwidth of microstrip antennas. This procedure gives bandwidth improvements without altering considerably the resonant frequency. Furthermore, the tapered microstrip antenna can be used as a lightweight altemative for bandwidth control and to eXtend the use of microstiip antenna technology to a wider variety of applications. Finally, suggestions for the continuity of this work are presented
Resumo:
This paper presents the performanee analysis of traffie retransmission algorithms pro¬posed to the HCCA medium aeeess meehanism of IEEE 802.11 e standard applied to industrial environmen1. Due to the nature of this kind of environment, whieh has eleetro¬magnetic interferenee, and the wireless medium of IEEE 802.11 standard, suseeptible to such interferenee, plus the lack of retransmission meehanisms, refers to an impraetieable situation to ensure quality of service for real-time traffic, to whieh the IEEE 802.11 e stan¬dard is proposed and this environment requires. Thus, to solve this problem, this paper proposes a new approach that involves the ereation and evaluation of retransmission al-gorithms in order to ensure a levei of robustness, reliability and quality of serviee to the wireless communication in such environments. Thus, according to this approaeh, if there is a transmission error, the traffie scheduler is able to manage retransmissions to reeo¬ver data 10s1. The evaluation of the proposed approaeh is performed through simulations, where the retransmission algorithms are applied to different seenarios, whieh are abstrae¬tions of an industrial environment, and the results are obtained by using an own-developed network simulator and compared with eaeh other to assess whieh of the algorithms has better performanee in a pre-defined applieation
Resumo:
A new method to perform TCP/IP fingerprinting is proposed. TCP/IP fingerprinting is the process of identify a remote machine through a TCP/IP based computer network. This method has many applications related to network security. Both intrusion and defence procedures may use this process to achieve their objectives. There are many known methods that perform this process in favorable conditions. However, nowadays there are many adversities that reduce the identification performance. This work aims the creation of a new OS fingerprinting tool that bypass these actual problems. The proposed method is based on the use of attractors reconstruction and neural networks to characterize and classify pseudo-random numbers generators
Resumo:
This work presents a theoretical and numerical analysis for the cascading of frequency selective surfaces, which uses rectangular patches and triangular Koch fractals as elements. Two cascading techniques are used to determine the transmission and reflection characteristics. Frequency selective surfaces includes a large area of Telecommunications and have been widely used due to its low cost, low weight and ability to integrate with others microwaves circuits. They re especially important in several applications, such as airplane, antennas systems, radomes, rockets, missiles, etc.. FSS applications in high frequency ranges have been investigated, as well as applications of cascading structures or multi-layer, and active FSS. Furthermore, the analyses uses the microwave circuit theory, with the Floquet harmonics, it allows to obtain the expressions of the scattering parameters of each structure and also of the composed structure of two or more FSS. In this work, numeric results are presented for the transmission characteristics. Comparisons are made with experimental results and simulated results using the commercial software Ansoft Designer® v3. Finally, some suggestions are presented for future works on this subject
Resumo:
The Electrical Submersible Pump (ESP) has been one of the most appropriate solutions for lifting method in onshore and offshore applications. The typical features for this application are adverse temperature, viscosity fluids and gas environments. The difficulties in equipments maintenance and setup contributing to increasing costs of oil production in deep water, therefore, the optimization through automation can be a excellent approach for decrease costs and failures in subsurface equipment. This work describe a computer simulation related with the artificial lifting method ESP. This tool support the dynamic behavior of ESP approach, considering the source and electric energy transmission model for the motor, the electric motor model (including the thermal calculation), flow tubbing simulation, centrifugal pump behavior simulation with liquid nature effects and reservoir requirements. In addition, there are tri-dimensional animation for each ESP subsytem (transformer, motor, pump, seal, gas separator, command unit). This computer simulation propose a improvement for monitoring oil wells for maximization of well production. Currenty, the proprietaries simulators are based on specific equipments manufactures. Therefore, it is not possible simulation equipments of another manufactures. In the propose approach there are support for diverse kinds of manufactures equipments
Resumo:
RFID (Radio Frequency Identification) identifies object by using the radio frequency which is a non-contact automatic identification technique. This technology has shown its powerful practical value and potential in the field of manufacturing, retailing, logistics and hospital automation. Unfortunately, the key problem that impacts the application of RFID system is the security of the information. Recently, researchers have demonstrated solutions to security threats in RFID technology. Among these solutions are several key management protocols. This master dissertations presents a performance evaluation of Neural Cryptography and Diffie-Hellman protocols in RFID systems. For this, we measure the processing time inherent in these protocols. The tests was developed on FPGA (Field-Programmable Gate Array) platform with Nios IIr embedded processor. The research methodology is based on the aggregation of knowledge to development of new RFID systems through a comparative analysis between these two protocols. The main contributions of this work are: performance evaluation of protocols (Diffie-Hellman encryption and Neural) on embedded platform and a survey on RFID security threats. According to the results the Diffie-Hellman key agreement protocol is more suitable for RFID systems
Resumo:
We propose a new approach to reduction and abstraction of visual information for robotics vision applications. Basically, we propose to use a multi-resolution representation in combination with a moving fovea for reducing the amount of information from an image. We introduce the mathematical formalization of the moving fovea approach and mapping functions that help to use this model. Two indexes (resolution and cost) are proposed that can be useful to choose the proposed model variables. With this new theoretical approach, it is possible to apply several filters, to calculate disparity and to obtain motion analysis in real time (less than 33ms to process an image pair at a notebook AMD Turion Dual Core 2GHz). As the main result, most of time, the moving fovea allows the robot not to perform physical motion of its robotics devices to keep a possible region of interest visible in both images. We validate the proposed model with experimental results
Resumo:
Global Positioning System, or simply GPS, it is a radionavigation system developed by United States for military applications, but it becames very useful for civilian using. In the last decades Brazil has developed sounding rockets and today many projects to build micro and nanosatellites has appeared. This kind of vehicles named spacecrafts or high dynamic vehicles, can use GPS for its autonome location and trajectories controls. Despite of a huge number of GPS receivers available for civilian applications, they cannot used in high dynamic vehicles due environmental issues (vibrations, temperatures, etc.) or imposed dynamic working limits. Only a few nations have the technology to build GPS receivers for spacecrafts or high dynamic vehicles is available and they imposes rules who difficult the access to this receivers. This project intends to build a GPS receiver, to install them in a payload of a sounding rocket and data collecting to verify its correct operation when at the flight conditions. The inner software to this receiver was available in source code and it was tested in a software development platform named GPS Architect. Many organizations cooperated to support this project: AEB, UFRN, IAE, INPE e CLBI. After many phases: defining working conditions, choice and searching electronic, the making of the printed boards, assembling and assembling tests; the receiver was installed in a VS30 sounding rocket launched at Centro de Lançamento da Barreira do Inferno in Natal/RN. Despite of the fact the locations data from the receiver were collected only the first 70 seconds of flight, this data confirms the correct operation of the receiver by the comparison between its positioning data and the the trajectory data from CLBI s tracking radar named ADOUR