900 resultados para Artificial intelligence -- Data processing
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Biológicas (Genética) - IBB
Resumo:
Neste trabalho, o método FDTD em coordenadas gerais (LN-FDTD) foi implementado para a análise de estruturas de aterramento com geometrias coincidentes ou não com o sistema de coordenadas cartesiano. O método soluciona as equações de Maxwell no domínio do tempo, permitindo a obtenção de dados a respeito da resposta transitória e de regime estacionário de estruturas diversas de aterramento. Uma nova formulação para a técnica de truncagem UPML em coordenadas gerais, para meios condutivos, foi desenvolvida e implementada para viabilizar a análise dos problemas (LN-UPML). Uma nova metodologia baseada em duas redes neurais artificiais é apresentada para a deteccão de defeitos em malhas de terra. O software FDTD em coordenadas gerais foi testado e validado para vários casos. Uma interface gráfica para usuários, chamada LANE SAGS, foi desenvolvida para simplificar o uso e automatizar o processamento dos dados.
Resumo:
A adoção de sistemas digitais de radiodifusão sonora, que estão em fase de testes no país, permite realizar novos estudos visando um melhor planejamento para a implementação dessas novas emissoras. O que significa reavaliar os principais modelos de radiopropagação existentes ou propor novas alternativas para atender as demandas inerentes dos sistemas digitais. Os modelos atuais, conforme Recomendações ITU-R P. 1546 e ITU-R P. 1812, não condizem fielmente com a realidade de algumas regiões do Brasil, principalmente com as regiões de clima tropical, como a Região Amazônica, seja pelo elevado índice pluviométrico seja pela vasta flora existente. A partir dos modelos adequados ao canal de propagação, torna-se viável desenvolver ferramentas de planejamento de cobertura mais precisas e eficientes. A utilização destas ferramentas é cabível tanto para a ANATEL, para a elaboração dos planos básicos de distribuição de canais quanto para os radiodifusores. No presente trabalho é apresentada uma metodologia utilizando a inteligência computacional, baseada em Inferênciass Baysianas, para predição da intensidade de campo elétrico, a qual pode ser aplicada ao planejamento ou expansão de áreas de cobertura em sistemas de radiodifusão para frequências na faixa de ondas médias (de 300 kHz a 3MHz). Esta metodologia gera valores de campo elétrico estimados a partir dos valores de altitude do terreno (através de análises de tabelas de probabilidade condicional) e estabelece a comparação destes com valores de campo elétrico medidos. Os dados utilizados neste trabalho foram coletados na região central do Brasil, próximo à cidade de Brasília. O sinal transmitido era um sinal de rádio AM transmitido na frequência de 980 kHz. De posse dos dados coletados durante as campanhas de medição, foram realizadas simulações utilizando tabelas de probabilidade condicional geradas por Inferências Bayesianas. Assim, é proposto um método para predizer valores de campo elétrico com base na correlação entre o campo elétrico medido e altitude, através da utilização de inteligência computacional. Se comparados a inúmeros trabalhos existentes na literatura que têm o mesmo objetivo, os resultados encontrados neste trabalho validam o uso da metodologia para determinar o campo elétrico de radiodifusão sonora em ondas médias utilizando Inferências Bayesianas.
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
Pós-graduação em Biociências - FCLAS
Resumo:
We have developed an algorithm using a Design of Experiments technique for reduction of search-space in global optimization problems. Our approach is called Domain Optimization Algorithm. This approach can efficiently eliminate search-space regions with low probability of containing a global optimum. The Domain Optimization Algorithm approach is based on eliminating non-promising search-space regions, which are identifyed using simple models (linear) fitted to the data. Then, we run a global optimization algorithm starting its population inside the promising region. The proposed approach with this heuristic criterion of population initialization has shown relevant results for tests using hard benchmark functions.
Resumo:
In this paper we study the intersection of Knowledge Organization with Information Technologies and the challenges and opportunities for Knowledge Organization experts that, in our view, are important to be studied and for them to be aware of. We start by giving some definitions necessary for providing the context for our work. Then we review the history of the Web, beginning with the Internet and continuing with the World Wide Web, the Semantic Web, problems of Artificial Intelligence, Web 2.0, and Linked Data. Finally, we conclude our paper with IT applications for Knowledge Organization in libraries, such as FRBR, BIBFRAME, and several OCLC initiatives, as well as with some of the challenges and opportunities in which Knowledge Organization experts and researchers might play a key role in relation to the Semantic Web.
Resumo:
This paper presents two diagnostic methods for the online detection of broken bars in induction motors with squirrel-cage type rotors. The wavelet representation of a function is a new technique. Wavelet transform of a function is the improved version of Fourier transform. Fourier transform is a powerful tool for analyzing the components of a stationary signal. But it is failed for analyzing the non-stationary signal whereas wavelet transform allows the components of a non-stationary signal to be analyzed. In this paper, our main goal is to find out the advantages of wavelet transform compared to Fourier transform in rotor failure diagnosis of induction motors.
Resumo:
Understanding consciousness is one of the most fascinating challenges of our time. From ancient civilizations to modern philosophers, questions have been asked on how one is conscious of his/her own existence and about the world that surrounds him/her. Although there is no precise definition for consciousness, there is an agreement that it is strongly related to human cognitive processes such as: thinking, reasoning, emotions, wishes. One of the key processes to the arising of the consciousness is the attention, a process capable of promoting a selection of a few stimuli from a huge amount of information that reaches us constantly. Machine consciousness is the field of the artificial intelligence that investigate the possibility of the production of conscious processes in artificial devices. This work presents a review about the theme of consciousness - in both natural and artificial aspects -, discussing this theme from the philosophical and computational perspectives, and investigates the feasibility of the adoption of an attentional schema as the base to the cognitive processing. A formal computational model is proposed for conscious agents that integrates: short and long term memories, reasoning, planning, emotion, decision making, learning, motivation and volition. Computer experiments in a mobile robotics domain under USARSim simulation environment, proposed by RoboCup, suggest that the agent can be able to use these elements to acquire experiences based on environment stimuli. The adoption of the cognitive architecture over the attentional model has potential to allow the emergence of behaviours usually associated to the consciousness in the simulated mobile robots. Further implementation under this model could potentially allow the agent to express sentience, selfawareness, self-consciousness, autonoetic consciousness, mineness and perspectivalness. By performing computation over an attentional space, the model also allows the ...