852 resultados para Aeronautical Firefighters oxygen consumption ventilatory threshold body composition
Resumo:
Objective: In chronic renal failure patients under hemodialysis (HD) treatment, the availability of simple, safe, and effective tools to assess body composition enables evaluation of body composition accurately, in spite of changes in body fluids that occur in dialysis therapy, thus contributing to planning and monitoring of nutritional treatment. We evaluated the performance of bioelectrical impedance analysis (BIA) and the skinfold thickness sum (SKF) to assess fat mass (FM) in chronic renal failure patients before (BHD) and after (AHD) HD, using air displacement plethysmography (ADP) as the standard method. Design: This single-center cross-sectional trial involved comparing the FM of 60 HD patients estimated BHD and AHD by BIA (multifrequential; 29 women, 31 men) and by SKF with those estimated by the reference method, ADP. Body fat-free mass (FFM) was also obtained by subtracting the total body fat from the individual total weight. Results: Mean estimated FM (kg [%]) observed by ADP BHD was 17.95 +/- 0.99 kg (30.11% +/- 1.30%), with a 95% confidence interval (CI) of 16.00 to 19.90 (27.56 to 32.66); mean estimated FM observed AHD was 17.92 +/- 1.11 kg (30.04% +/- 1.40%), with a 95% CI of 15.74 to 20.10 (27.28 to 32.79). Neither study period showed a difference in FM and FFM (for both kg and %) estimates by the SKF method when compared with ADP; however, the BIA underestimated the FM and overestimated the FFM (for both kg and %) when compared with ADP. Conclusion: The SKF, but not the BIA, method showed results similar to ADP and can be considered adequate for FM evaluation in HD patients. (C) 2012 by the National Kidney Foundation, Inc. All rights reserved.
Resumo:
The purpose of this study was to investigate energy system contributions and energy costs in combat situations. The sample consisted of 10 male taekwondo athletes (age: 21 +/- 6 years old; height: 176.2 +/- 5.3 cm; body mass: 67.2 +/- 8.9 kg) who compete at the national or international level. To estimate the energy contributions, and total energy cost of the fights, athletes performed a simulated competition consisting of three 2 min rounds with a 1 min recovery between each round. The combats were filmed to quantify the actual time spent fighting in each round. The contribution of the aerobic (WAER), anaerobic alactic (W-PCR), and anaerobic lactic (Wleft perpendicularLA-right perpendicular) energy systems was estimated through the measurement of oxygen consumption during the activity, the fast component of excess post-exercise oxygen consumption, and the change in blood lactate concentration in each round, respectively. The mean ratio of high intensity actions to moments of low intensity (steps and pauses) was similar to 1:7. The W-AER, W-PCR and (Wleft perpendicularLA-right perpendicular) system contributions were estimated as 120 +/- 22 kJ (66 +/- 6%), 54 +/- 21 kJ (30 +/- 6%), 8.5 kJ (4 +/- 2%), respectively. Thus, training sessions should be directed mainly to the improvement of the anaerobic alactic system (responsible by the highintensity actions), and of the aerobic system (responsible by the recovery process between high- intensity actions).
Resumo:
Daily intake of conjugated linoleic acid (CLA) has been shown to reduce body fat accumulation and to increase body metabolism; this latter effect has been often associated with the up-regulation of uncoupling proteins (UCPs). Here we addressed the effects of a CLA-supplemented murine diet (similar to 2 % CLA mixture, cis-9, trans-10 and trans-10, cis-12 isomers; 45 % of each isomer on alternating days) on mitochondrial energetics, UCP2 expression/activity in the liver and other associated morphological and functional parameters, in C57BL/6 mice. Diet supplementation with CLA reduced both lipid accumulation in adipose tissues and triacylglycerol plasma levels, but did not augment hepatic lipid storage. Livers of mice fed a diet supplemented with CLA showed high UCP2 mRNA levels and the isolated hepatic mitochondria showed indications of UCP activity: in the presence of guanosine diphosphate, the higher stimulation of respiration promoted by linoleic acid in mitochondria from the CLA mice was almost completely reduced to the level of the stimulation from the control mice. Despite the increased generation of reactive oxygen species through oxi-reduction reactions involving NAD(+)/NADH in the Krebs cycle, no oxidative stress was observed in the liver. In addition, in the absence of free fatty acids, basal respiration rates and the phosphorylating efficiency of mitochondria were preserved. These results indicate a beneficial and secure dose of CLA for diet supplementation in mice, which induces UCP2 overexpression and UCP activity in mitochondria while preserving the lipid composition and redox state of the liver.
Resumo:
Objective: Obesity is a major public health problem leading to, among other things, reduced functional capacity. Moreover, obesity-related declines in functional capacity may be compounded by the detrimental consequences of menopause. The aim of this study was to understand the potential effects of excess body mass on measures of functional capacity in postmenopausal women. Methods: Forty-five postmenopausal women aged 50 to 60 years were divided into two groups according to body mass index (BMI): obese (BMI, >= 30 kg/m(2); n = 19) and nonobese (BMI, 18.5-29.9 kg/m(2); n = 26). To determine clinical characteristics, body composition, bone mineral density, and maximal exercise testing was performed, and a 3-day dietary record was estimated. To assess quadriceps function, isokinetic exercise testing at 60 degrees per second (quadriceps strength) and at 300 degrees per second (quadriceps fatigue) was performed. Results: The absolute value of the peak torque was not significantly different between the groups; however, when the data were normalized by body mass and lean mass, significantly lower values were observed for obese women compared with those in the nonobese group (128% +/- 25% vs 155% +/- 24% and 224% +/- 38% vs 257% +/- 47%, P < 0.05). The fatigue index did not show any significant difference for either group; however, when the data were normalized by the body mass and lean mass, significantly lower values were observed for obese women (69% +/- 16% vs 93% +/- 18% and 120% +/- 25% vs. 135% +/- 23%, P < 0.01). Conclusions: Our results show that despite reduced muscle force, the combination of obesity and postmenopause may be associated with greater resistance to muscle fatigue.
Resumo:
The aims were both to determine lactate and ventilatory threshold during incremental resistance training and to analyze the acute cardiorespiratory and metabolic responses during constant-load resistance exercise at lactate threshold (LT) intensity. Ten healthy men performed 2 protocols on leg press machine. The incremental test was performed to determine the lactate and ventilatory thresholds through an algorithmic adjustment method. After 48 h, a constant-load exercise at LT intensity was executed. The intensity of LT and ventilatory threshold was 27.1 +/- 3.7 and 30.3 +/- 7.9% of 1RM, respectively (P=0.142). During the constant-load resistance exercise, no significant variation was observed between set 9 and set 15 for blood lactate concentration (3.3 +/- 0.9 and 4.1 +/- 1.4 mmol.L-1, respectively. P=0.166) and BORG scale (11.5 +/- 2.9 and 13.0 +/- 3.5, respectively. P=0.783). No significant variation was observed between set 6 and set 15 for minute ventilation (19.4 +/- 4.9 and 22.4 +/- 5.5L. min(-1), respectively. P=0.091) and between S3 and S15 for VO2 (0.77 +/- 0.18 and 0.83 +/- 0.16L. min(-1), respectively. P=1.0). Constant-load resistance exercise at LT intensity corresponds to a steady state of ventilatory, cardio-metabolic parameters and ratings of perceived exertion.
Resumo:
Schizophrenia has been defined as a neurodevelopmental disease that causes changes in the process of thoughts, perceptions. and emotions, usually leading to a mental deterioration and affective blunting. Studies have shown altered cell respiration and oxidative stress response in schizophrenia; however, most of the knowledge has been acquired from postmortem brain analyses or from nonneural cells. Here we describe that neural cells, derived from induced pluripotent stem cells generated from skin fibroblasts of a schizophrenic patient, presented a twofold increase in extramitochondrial oxygen consumption as well as elevated levels of reactive oxygen species (ROS), when compared to controls. This difference in ROS levels was reverted by the mood stabilizer valproic acid. Our model shows evidence that metabolic changes occurring during neurogenesis are associated with schizophrenia, contributing to a better understanding of the development of the disease and highlighting potential targets for treatment and drug screening.
Resumo:
Obesity is a chronic disease characterized by increased accumulation of body fat. We evaluated the socioeconomic aspects, body composition, risk of metabolic complications associated with obesity, eating habits and lifestyle in both women and men adults and elderly with body mass index (BMI) 40 kg/m(2). Among the subjects studied, 79% (n = 32) are female, 5% (n = 2) smokers, 39% (n = 16) use alcohol and only 24% (n = 10) are practitioners of physical exercise. The higher food intake was breads, followed by rice. The daily intake of fruits and vegetables is low. Positive correlation between consumption of sugar and BMI and abdominal circumference (AC) was observed. In summary, was found that morbidly obese patients that looking for nutritional counseling presents increased body fat, poor eating habits and sedentary lifestyle.
Resumo:
Objective: Aging is characterized by alterations in body composition such as an increase in body fat and decreases in muscle mass (sarcopenia) and bone density (osteopenia). Leucine supplementation has been shown to acutely stimulate protein synthesis and to decrease body fat. However, the long-term effect of consistent leucine supplementation is not well defined. This study investigated the effect of leucine supplementation during aging. Methods: Six-month-old rats were divided into three groups: an adult group (n = 10) euthanized at 6 mo of age, a leucine group (n = 16) that received a diet supplemented with 4% leucine for 40 wk, and a control group (n = 19) that received the control diet for 40 wk. The following parameters were evaluated: body weight, food intake, chemical carcass composition, indicators of acquired chronic diseases, and indicators of protein nutritional status. Results: Body weight and fat were lower in the leucine group after 40 wk of supplementation compared with the control group but still higher than in the adult group. The lipid and glycemic profiles were equally altered in the control and leucine groups because of aging. In addition, leucine supplementation did not affect the changes in protein status parameters associated with aging, such as decreases in body and muscle protein and total serum protein. Conclusion: The results indicate that leucine supplementation attenuates body fat gain during aging but does not affect risk indicators of acquired chronic diseases. Furthermore, supplemented animals did not show signs of a prevention of the decrease in lean mass associated with aging. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Background: The double burden of obesity and underweight is increasing in developing countries and simple methods for the assessment of fat mass in children are needed. Aim: To develop and validate a new anthropometric predication equation for assessment of fat mass in children. Subjects and methods: Body composition was assessed in 145 children aged 9.8 +/- 1.3 (SD) years from Sao Paulo, Brazil using dual energy X-ray absorptiometry (DEXA) and skinfold measurements. The study sample was divided into development and validation sub-sets to develop a new prediction equation for FM (PE). Results: Using multiple linear regression analyses, the best equation for predicting FM (R-2 - 0.77) included body weight, triceps skinfold, height, gender and age as independent variables. When cross-validated, the new PE was valid in this sample (R-2 = 0.80), while previously published equations were not. Conclusion: The PE was more valid for Brazilian children that existing equations, but further studies are needed to assess the validity of this PE in other populations.
Resumo:
Objective: Human immunodeficiency virus type 1 (HIV)-associated lipodystrophy syndrome compromises body composition and produces metabolic alterations, such as dyslipidemia and insulin resistance. This study aims to determine whether energy expenditure and substrate oxidation are altered due to human HIV-associated lipodystrophy syndrome. Methods: We compared energy expenditure and substrate oxidation in 10 HIV-infected men with lipodystrophy syndrome (HIV+LIPO+), 22 HIV-infected men without lipodystrophy syndrome (HIV+LIPO-), and 12 healthy controls. Energy expenditure and substrate oxidation were assessed by indirect calorimetry, and body composition was assessed by dual-energy X-ray absorptiometry. The substrate oxidation assessments were performed during fasting and 30 min after eucaloric breakfast consumption (300 kcal). Results: The resting energy expenditure adjusted for lean body mass was significantly higher in the HIV+LIPO+ group than in the healthy controls (P = 0.02). HIV-infected patients had increased carbohydrate oxidation and lower lipid oxidation when compared to the control group (P < 0.05) during fasting conditions. After the consumption of a eucaloric breakfast, there was a significant increase in carbohydrate oxidation only in the HIV+LIPO- and control groups (P < 0.05), but there was no increase in the HIV+LIPO+ group. Conclusion: Hypermetabolism and alteration in substrate oxidation were observed in the HIV+LIPO+ group. (C)2012 Elsevier Inc. All rights reserved.
Resumo:
Abstract Introduction We aimed to gather knowledge on the cardiac autonomic modulation in patients with fibromyalgia (FM) in response to exercise and to investigate whether this population suffers from chronotropic incompetence (CI). Methods Fourteen women with FM (age: 46 ± 3 years; body mass index (BMI): 26.6 ± 1.4 kg/m2) and 14 gender-, BMI- (25.4 ± 1.3 kg/m2), and age-matched (age: 41 ± 4 years) healthy individuals (CTRL) took part in this cross-sectional study. A treadmill cardiorespiratory test was performed and heart-rate (HR) response during exercise was evaluated by the chronotropic reserve. HR recovery (deltaHRR) was defined as the difference between HR at peak exercise and at both first (deltaHRR1) and second (deltaHRR2) minutes after the exercise test. Results FM patients presented lower maximal oxygen consumption (VO2 max) when compared with healthy subjects (22 ± 1 versus CTRL: 32 ± 2 mL/kg/minute, respectively; P < 0.001). Additionally, FM patients presented lower chronotropic reserve (72.5 ± 5 versus CTRL: 106.1 ± 6, P < 0.001), deltaHRR1 (24.5 ± 3 versus CTRL: 32.6 ± 2, P = 0.059) and deltaHRR2 (34.3 ± 4 versus CTRL: 50.8 ± 3, P = 0.002) than their healthy peers. The prevalence of CI was 57.1% among patients with FM. Conclusions Patients with FM who undertook a graded exercise test may present CI and delayed HR recovery, both being indicative of cardiac autonomic impairment and higher risk of cardiovascular events and mortality.
Resumo:
OBJECTIVES: The present investigation aimed to study the protective effect of intermittent normothermic cardioplegia in rabbit's hypertrophic hearts. METHODS: The parameters chosen were 1) the ratio heart weight / body weight, 2) the myocardial glycogen levels, 3) ultrastructural changes of light and electron microscopy, and 4) mitochondrial respiration. RESULTS: 1) The experimental model, coarctation of the aorta induced left ventricular hypertrophy; 2) the temporal evolution of the glycogen levels in hypertrophic myocardium demonstrates that there is a significant decrease; 3) It was observed a time-dependent trend of higher oxygen consumption values in the hypertrophic group; 4) there was a significant time-dependent decrease in the respiratory coefficient rate in the hypertrophic group; 5) the stoichiometries values of the ADP: O2 revealed the downward trend of the values of the hypertrophic group; 6) It was possible to observe damaged mitochondria from hypertrophic myocardium emphasizing the large heterogeneity of data. CONCLUSION: The acquisition of biochemical data, especially the increase in speed of glycogen breakdown, when anatomical changes are not detected, represents an important result even when considering all the difficulties inherent in the process of translating experimental results into clinical practice. With regard to the adopted methods, it is clear that morphometric methods are less specific. Otherwise, the biochemical data allow detecting alterations of glycogen concentrations and mitochondria respiration before the morphometric alterations should be detected
Resumo:
[EN] Red porgy, Pagrus pagrus, is one of the marine fish species for the aquaculture diversification in the Mediterranean and Mid Atlantic coasts. Relevance of its nutrition has been demonstrated not only from growth and body composition, but also because it?s important role in fish skin colour and carotenoids deposition (Kalinowski et al., 2005; Pavlidis et al., 2006). Present study evaluate the influence of two different crab meals by products, marine and freshwater origin, as protein and pigment sources in experimental diets for red porgy and its effects on fish growth and feed utilization parameters, fish skin colour and fish composition. Both crab meals used in present study are suitability as partial replacers of fish meal in diets for the red porgy. Dietary inclusion levels of 10% and 20% of the dietary protein from these meals have no detrimental effects on growth and feed utilization parameters respect to a fish meal based diet, with high improvements in fish skin redness and skin colour saturation by increased inclusion levels. Digestibility and retention efficiency parameters are being analyzing at the moment.
Resumo:
[EN] This study was performed to test the hypothesis that administration of recombinant human erythropoietin (rHuEpo) in humans increases maximal oxygen consumption by augmenting the maximal oxygen carrying capacity of blood. Systemic and leg oxygen delivery and oxygen uptake were studied during exercise in eight subjects before and after 13 wk of rHuEpo treatment and after isovolemic hemodilution to the same hemoglobin concentration observed before the start of rHuEpo administration. At peak exercise, leg oxygen delivery was increased from 1,777.0+/-102.0 ml/min before rHuEpo treatment to 2,079.8+/-120.7 ml/min after treatment. After hemodilution, oxygen delivery was decreased to the pretreatment value (1,710.3+/-138.1 ml/min). Fractional leg arterial oxygen extraction was unaffected at maximal exercise; hence, maximal leg oxygen uptake increased from 1,511.0+/-130.1 ml/min before treatment to 1,793.0+/-148.7 ml/min with rHuEpo and decreased after hemodilution to 1,428.0+/-111.6 ml/min. Pulmonary oxygen uptake at peak exercise increased from 3,950.0+/-160.7 before administration to 4,254.5+/-178.4 ml/min with rHuEpo and decreased to 4,059.0+/-161.1 ml/min with hemodilution (P=0.22, compared with values before rHuEpo treatment). Blood buffer capacity remained unaffected by rHuEpo treatment and hemodilution. The augmented hematocrit did not compromise peak cardiac output. In summary, in healthy humans, rHuEpo increases maximal oxygen consumption due to augmented systemic and muscular peak oxygen delivery.
Resumo:
[EN] To study the role of muscle mass and muscle activity on lactate and energy kinetics during exercise, whole body and limb lactate, glucose, and fatty acid fluxes were determined in six elite cross-country skiers during roller-skiing for 40 min with the diagonal stride (Continuous Arm + Leg) followed by 10 min of double poling and diagonal stride at 72-76% maximal O(2) uptake. A high lactate appearance rate (R(a), 184 +/- 17 micromol x kg(-1) x min(-1)) but a low arterial lactate concentration ( approximately 2.5 mmol/l) were observed during Continuous Arm + Leg despite a substantial net lactate release by the arm of approximately 2.1 mmol/min, which was balanced by a similar net lactate uptake by the leg. Whole body and limb lactate oxidation during Continuous Arm + Leg was approximately 45% at rest and approximately 95% of disappearance rate and limb lactate uptake, respectively. Limb lactate kinetics changed multiple times when exercise mode was changed. Whole body glucose and glycerol turnover was unchanged during the different skiing modes; however, limb net glucose uptake changed severalfold. In conclusion, the arterial lactate concentration can be maintained at a relatively low level despite high lactate R(a) during exercise with a large muscle mass because of the large capacity of active skeletal muscle to take up lactate, which is tightly correlated with lactate delivery. The limb lactate uptake during exercise is oxidized at rates far above resting oxygen consumption, implying that lactate uptake and subsequent oxidation are also dependent on an elevated metabolic rate. The relative contribution of whole body and limb lactate oxidation is between 20 and 30% of total carbohydrate oxidation at rest and during exercise under the various conditions. Skeletal muscle can change its limb net glucose uptake severalfold within minutes, causing a redistribution of the available glucose because whole body glucose turnover was unchanged.