936 resultados para ANTIBODY ABSORPTION
Resumo:
Durability of concrete can be improved by applying surface treatments. Pore-lining treatments prevent or delay the ingress of water-borne salts while allowing vapour transfer across the concrete surface. The most common pore-liners are silanes and siloxanes; both reported to give good results. One area of concern, however, is variability in effectiveness of the treatment. This variability may be due to inconsistent coverage or extreme drying conditions. With care these can be controlled but another source of variability which is difficult to control is the moisture profile within the concrete at the time of application of the treatment. This paper describes a test programme to assess the sensitivity of three different surface treatments to moisture gradient in the concrete at the time of application of treatment. The test programme included durability parameters such as chloride ingress, corrosion due to chloride ingress, freeze-thaw salt scaling resistance. Water absorption (sorptivity) of treated and untreated concretes was also measured with a non-distructive test technique called Autoclam with the aim of determining if the Autoclam sorptivity test can be used to assess the effectiveness of surface treatments. Using these results it is possible to avoid, or allow for, moisture conditions which would adversely affect the success of a pore-liner. However there are advantages in specifying an expected performance of the surface treatment rather than specifying the conditions in which it must be placed. By this method a treatment would have to achieve a specified value of sorptivity or a specified reduction in sorptivity. Failure to do so would be an objective basis on which to make a decision of whether or not to reject the treatment. The Autoclam is a device capable of measuring sorptivity values down to the range typical of surface treated concrete. The paper assesses if the device can be used to discriminate between acceptable treatment and unsatisfactory treatments.
Resumo:
BACKGROUND: Angiogenesis is a key hallmark of tumourigenesis and its inhibition is a proven strategy for the development of novel anti-cancer therapeutics. An important aspect of early angiogenesis is the co-ordinated migration and invasion of endothelial cells through the hypoxic tumour tissue. Cathepsin S has been shown to play an important role in angiogenesis as has vascular endothelial growth factor (VEGF). We sought to assess the anti-angiogenic effect of Fsn0503, a novel cathepsin S inhibitory antibody, when combined with anti-VEGF on vascular development.
METHODOLOGY/PRINCIPAL FINDINGS: Cathepsin S expression and secretion from endothelial cells was characterised using RT-PCR and western blotting. We further show that cathepsin S promotes pericellular hydrolysis of extracellular matrix components in the tumour microenvironment and facilitates endothelial invasion. The cathepsin S inhibitory antibody, Fsn0503, blocks extracellular proteolysis, inhibiting endothelial invasion and tube formation in cell-based assays. The anti-angiogenic effects of Fsn0503 were also shown in vivo where it significantly retarded the development of vasculature in human xenograft models. Furthermore, when Fsn0503 was combined with an anti-VEGF antibody, a synergistic inhibition of microvascular development was observed.
CONCLUSIONS/SIGNIFICANCE: Taken together, this data demonstrates that the antibody-mediated targeting of cathepsin S represents a novel method of inhibiting angiogenesis. Furthermore, when used in combination with anti-VEGF therapies, Fsn0503 has the potential to significantly enhance current treatments of tumour neovascularisation and may also be of use in the treatment of other conditions associated with inappropriate angiogenesis.
Resumo:
Antibody targeting of drug substances can improve the efficacy of the active molecule, improving distribution and concentration of the drug at the site of injury/disease. Encapsulation of drug substances into polymeric nanoparticles can also improve the therapeutic effects of such compounds by protecting the molecule until its action is required. In this current study, we have brought together these two rationales to develop a novel immunonanoparticle with improved therapeutic effect against colorectal tumor cells. This nanoparticle comprised a layer of peripheral antibodies (Ab) directed toward the Fas receptor (CD95/Apo-1) covalently attached to poly(lactide-co-glycolide) nanoparticles (NP) loaded with camptothecin. Variations in surface carboxyl density permitted up to 48.5 mu g coupled Ab per mg of NP and analysis of nanoparticulate cores showed efficient camptothecin loading. Fluorescence visualization studies confirmed internalization of nanoconstructs into endocytic compartments of HCT 116 cells, an effect not evident in NP without superficial Ab. Cytotoxicity studies were then carried out against HCT116 cells. After 72 h, camptothecin solution resulted in an IC50 of 21.8 ng mL(-1). Ab-directed delivery of NP-encapsulated camptothecin was shown to be considerably more effective with an IC50 of 0.37 ng mL(-1). Calculation of synergistic ratios for these nanoconstructs demonstrated synergy of pharmacological relevance. Indeed, the results in this paper suggest that the attachment of anti-Fas antibodies to camptothecin-loaded nanoparticles may result in a therapeutic strategy that could have potential in the treatment of tumors expressing death receptors.
Resumo:
The incorporation of melamine into food products is banned but its misuse has been widely reported in both animal feeds and food. The development of a rapid screening immunoassay for monitoring of the substance is an urgent requirement. Two haptens of melamine were synthesized by introducing spacer arms of different lengths and structures on the triazine ring of the analyte molecular structure. 6-Aminocaproic acid and 3-mercaptopropionic acid were reacted with 2-chloro-4,6-diamino-1,3,5-triazine (CAAT) to produce hapten 1[3-(4,6-diamino-1,6-dihydro-1,3,5-triazin-2-ylamino) hexanoic acid] and hapten 2[3-(4,6-diamino-1,6-dihydro-1,3,5-triazin-2-ylthio) propanoic acid]. respectively. The molecular structures of the two haptens were identified by I H nuclear magnetic resonance spectrometry, mass spectrometry and infrared spectrometry. An immunogen was prepared by coupling hapten 1 to bovine serum albumin (BSA). Two plate coating antigens were prepared by coupling both haptens to egg ovalbumin (OVA). A competitive indirect enzyme-linked immunosorbent assay (ciELISA) was developed to evaluate homogeneous and heterogeneous assay formats. The results showed that polyclonal antibodies with high titers were obtained, and the heterogeneous immunoassay format demonstrated a better performance with an IC50 of 70.6 ng mL(-1), a LOD of 2.6 ng mL(-1) and a LOQ of 7.6 ng mL(-1). Except for cyromazine, no obvious cross-reactivity to common compounds was found. The data showed that the hapten synthesis was successful and the resultant antisera could be used in an immunoassay for the rapid and sensitive detection of this banned chemical. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The spontaneous formation of the neurotoxic carcinogen acrylamide in a wide range of cooked foods has recently been discovered, leading to dietary exposure estimates of 30.8 mu g of acrylamide day(-1) for an average 77 kg human male. This is considerably higher than the European legal limit of acrylamide in drinking water, which is approximately 0.2 mu g of acrylamide person(-1) day(-1). A recent study of 62,573 women over 11.3 years has observed an increased risk of postmenopausal endometrial and ovarian cancer (but not breast cancer) with increasing dietary acrylamide intake, demonstrating significant risk to human health. As individual acrylamide exposure is affected by dietary habits, cooking methods, and cigarette consumption; accurate extrapolation from estimated dietary exposure is extremely difficult. Quantifying biomarkers of acrylamide exposure therefore remains the most effective means of rapidly determining individual exposure to acrylamide, and correlating exposure with lifestyle choices. Current methodologies for the analysis of blood biomarkers of acrylamide are focused on expensive, slower chromatographic techniques such as GC and LC coupled to mass spectrometry. This paper describes the first successful development of two monoclonal antibodies specific to acrylamide-adducted haemoglobin (IC50 of 94 ng ml(-1) and 198 ng ml(-1)), that are suitable for use in a high-throughput biomarker immunoassay to determine individual acrylamide exposure. Further development of acrylamide-haemoglobin standards with defined levels of acrylamide adduction will enable a fully quantitative assay, and allow sensitivity comparisons with alternative chromatographic methods of analysis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In recent years, nanoparticulate-mediated drug delivery research has examined a full spectrum of nanoparticles that can be used in diagnostic and therapeutic cancer applications. A key aspect of this technology is in the potential to specifically target the nanoparticles to diseased cells using a range of molecules, in particular antibodies. Antibody-nanoparticle conjugates have the potential to elicit effective targeting and release of therapeutic targets at the disease site, while minimizing off-target side effects caused by dosing of normal tissues. This article provides an overview of various antibody-conjugated nanoparticle strategies, focusing on the rationale of cell-surface receptors targeted and their potential clinical application.
Resumo:
There is an urgent global need for preventative strategies against HIV-1 infections. Llama heavy-chain antibody fragments (VHH) are a class of molecules recently described as potent cross-clade HIV-1 entry inhibitors. We studied the potential of a VHH-based microbicide in an application-oriented fashion. We show that VHH can be inexpensively produced in high amounts in the GRAS organism S. cerevisiae, resulting in very pure, and endotoxin free product. VHH are very stable under conditions they might encounter during transport, storage or use by women. We developed active formulations of VHH in aqueous gel and compressed and lyophilized tablets for controlled release from an intra vaginal device. The release profile of the VHH from e.g. a vaginal ring suggests sufficient bioavailability and protective concentration of the molecule at the mucosal site at the moment of the infection. The ex vivo penetration kinetics through human tissues show that the VHH diffuse into the mucosal layer and open the possibility to create a second defense layer either by blocking the HIV receptor binding sites or by blocking the receptors of immune cells in the mucosa. In conclusion, our data show that VHH have
Resumo:
Research into the targeting of drug substances to a specific disease site has enjoyed sustained activity for many decades. The reason for such fervent activity is the considerable clinical advantages that can be gained when the delivery system plays a pivotal role in determining where the drug is deposited. When compared to conventional formulations where no such control exists, such as parenteral and oral systems, the sophisticated targeting device can reduce side effects and limit collateral damage to surrounding normal tissue. No more so is this important than in the area of oncology when dose-limiting side effects are often encountered as an ever present difficulty. In this review, the types of colloidal carrier commonly used in targeted drug delivery are discussed, such as gold and polymeric colloids. In particular, the process of attaching targeting capabilities is considered, with reference to antibody technologies used as the targeting motifs. Nanotechnology has brought together a means to carry both a drug and targeting ligand in self-contained constructs and their applications to both clinical therapy and diagnosis are discussed.
Resumo:
We describe an antibody-lectin sandwich assay for quantitation of glycoforms of proteins. The assay uses deglycosylated IgG antibody immobilized on a microtiter plate to capture the protein of interest from the sample. The particular glycoform is then identified by reaction with biotin-labeled lectin, which is measured using streptavidin/alkaline phosphatase. The assay can be adapted to quantitate any protein’s glycoforms by simply substituting the antibody and lectin with specific alternatives,
Resumo:
Nanosecond time-resolved absorption (TA), resonance Raman (TR(3)), and infrared (TRIR) spectra are reported for several complexes [Ru(X)(R)(CO)(2)(alpha-diimine)] (X = Cl, Br, I; R = Me, Et; alpha-diimine = N,N'-diisopropyl-1,4-diaza-1,3-butadiene (iPr-DAB), pyridine-2-carbaldehyde-N-isopropylimine (iPr-PyCa), 2,2'-bipyridine (bpy)). This is the first instance in which the TA, TR(3), and TRIR techniques have been used to probe excited states in the same series of complexes. The TA spectra of the iodide complexes show a transient absorption between 550 and 700 nm, which does not depend on the solvent but shifts to lower energy in the order iPr-DAB > bpy > iPr-PyCa. This band is assigned to an intraligand transition. For the corresponding chloride and bromide complexes this band occurs at higher energy, most probably because of a change of character of the lowest excited state from XLCT to MLCT. The TRIR spectra show an increase in v(CO) (and k(CO)) on promotion to the excited state; however, the shifts Delta v(CO) show a decrease in the order Cl- > Br- > I-. The TR(3) spectra of the excited complexes [Ru(X)(R)(Co)(2)(iPr-DAB)] show v(s)(CN) of the iPr-DAB ligand 50-80 cm(-1) lower in frequency than for the complexes in their ground state. This frequency shift decreases in the order Cl- > Br- > I-, indicating a decrease of CT character of the lowest excited state in this order. However, going from X = Br to I, the effect on Delta v(CO) is much larger than the decrease of Delta v(s)(CN). This different effect on the CO- and CN-stretching frequencies is assigned to a gradual change in character of the lowest excited state from MLCT to XLCT when Cl- is replaced by Br- and I-. This result confirms a similar conclusion derived from previous resonance Raman and emission experiments on these complexes.
ABSORPTION-SPECTRA AND DYNAMICS OF CHARGE-TRANSFER EXCITED-STATES OF COPPER(I) COMPLEXES IN SOLUTION
Resumo:
The effect of the addition of water on the absorption of carbon dioxide by the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide was studied experimentally by measuring the low-pressure carbon dioxide solubility and the viscosity of the liquid solvent at temperatures from 303 to 323 K. Water is only partially miscible with the ionic liquid up to a mole fraction of 0.302 at 293 K, 0.321 at 303 K and 0.381 at 323 K. It was observed that the solubility of carbon dioxide decreases with the quantity of water from a mole fraction of 2.63 × 10-2 for the pure ionic liquid at 303.4 K to a value of 1.88 × 10-2, a reduction of 30% of the solubility, for a mole fraction of water of 0.28. The viscosity of the liquid solvent also decreases, up to 40% at 303 K, from 28.6 mPa s for the pure ionic liquid to 16.4 mPa s for a water mole fraction of 0.302.
Resumo:
Objective: To investigate the in vivo effects of quercetin following the ingestion of fried onions.