926 resultados para AIR
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Over the years, grinding has been considered one of the most important manufacturing processes. Grinding is a high precision process, and the loss of a single workpiece in this stage of the production is unacceptable, fir the value added to the material is very high due to many processes it has already undergone prior to grinding. This study aims to contribute toward the development of an experimental methodology whereby the pressure and speed of the air layer produced by the high rotation of the grinding wheel is evaluated with and without baffles, i.e., in an optimized grinding operation and in a traditional one. Tests were also carried out with steel samples to check the difference in grinding wheel wear with and without the use of baffles.
Resumo:
In this paper, a thermoeconomic analysis method based on the first and second law of thermodynamics and applied to an evaporative cooling system coupled to an adsorption dehumidifier, is presented. The main objective is the use of a method called exergetic manufacturing cost (EMC) applied to a system that operates in three different conditions to minimize the operation costs. Basic parameters are the RIP ratio (reactivation air/process air) and the reactivation air temperature. Results of this work show that the minimum reactivation temperature and the minimum RIP ratio corresponds to the smaller EMC. This result can be corroborated through an energetic analysis. It is noted that this case is also the one corresponding to smaller energy loss. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Plasma treatments are frequently employed to modify surface properties of materials such as adhesivity, hydrophobicity, oleophobicity etc. Present work deals with surface modification of common commercial polymers such as polyethylene terephthalate (PET) and polyurethane (PU) by an air dielectric barrier discharge (DBD) at atmospheric pressure. The DBD treatment was performed in a plain reactor in wire-duct geometry (non-uniform field reactor), which was driven by a 60 Hz power supply. Material characterization was carried out by water contact angle measurements, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The plasma-induced modifications are associated with incorporation of polar oxygen and nitrogen containing groups on the polymer surface. The AFM analysis reveals that the plasma treatment roughens the material surface. Due to these structural and morphological changes the surface of DBD-treated polymers becomes more hydrophilic resulting in enhanced adhesion properties. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Cold atmospheric plasma treatment of microorganisms and living tissues has become a popular topic in modern plasma physics and in medical science. The plasma is capable of bacterial inactivation and noninflammatory tissue modification, which makes it an attractive tool for treatment of skin diseases, open injuries and dental caries. Because of their enhanced plasma chemistry, Dielectric Barrier Discharges (DBDs) have been widely investigated for some emerging applications such as biological and chemical decontamination of media at ambient conditions. Despite the high breakdown voltage in air at atmospheric pressure, the average current of DBD discharges is low. Therefore, a DBD can be applied in direct contact with biological objects without causing any damage. In this work a 60 Hz DBD reactor, which generates cold atmospheric plasma inside Petri dishes with bacterial culture, is investigated. Samples of Staphylococcus aureus, a Gram-positive bacterium and Escherichia coil a Gram-negative bacterium were selected for this study. The bacterial suspensions were evenly spread on agar media planted in Petri dishes. The reactor electrodes were placed outside the Petri dish, thus eliminating the risk of samples microbial contamination. The covered Petri dish with agar medium in it serves as dielectric barrier during the treatment. The plasma processing was conducted at same discharge power (similar to 1.0 W) with different exposure time. Sterilization of E. coil and S. aureus was achieved for less than 20 min. Plasma induced structural damages of bacteria were investigated by Scanning Electron Microscopy. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
CONTEXTO E OBJETIVO: Os tubos traqueais são dispositivos utilizados para manutenção da ventilação. A hiperinsuflação do balonete do tubo traqueal, causada pela difusão do óxido nitroso (N2O), pode determinar lesões traqueais, que se manifestam clinicamente como odinofagia, rouquidão e tosse. A lidocaína, quando injetada no balonete do tubo traqueal, difunde-se através de sua parede, determinando ação anestésica local na traquéia. O objetivo foi avaliar a efetividade e a segurança do balonete do tubo traqueal preenchido com ar comparado com o balonete preenchido com lidocaína, considerando os desfechos: sintomas cardiovasculatórios (HAS, taquicardia); odinofagia, tosse, rouquidão e tolerância ao tubo traqueal. TIPO DE ESTUDO E LOCAL: Estudo clínico prospectivo, realizado no Departamento de Anestesiologia da Faculdade de Medicina da Unesp, campus de Botucatu. MÉTODOS: A pressão do balonete do tubo traqueal foi medida, entre 50 pacientes, antes, 30, 60, 90 e 120 minutos após o início da inalação de N2O anestésico. As pacientes foram distribuídas aleatoriamente em dois grupos: Air, em que o balonete foi inflado com ar para obtenção de pressão de 20 cm H2O, e Lido, em que o balonete foi preenchido com lidocaína a 2% mais bicarbonato de sódio a 8,4% para obtenção da mesma pressão. O desconforto antes da extubação, e manifestações clínicas como dor de garganta, rouquidão e tosse foram registrados no momento da alta da unidade de cuidados pós-anestésicos, e dor de garganta e rouquidão foram avaliadas também 24 horas após a anestesia. RESULTADOS: Os valores da pressão no balonete em G2 foram significativamente menores do que os de Air em todos os tempos de estudo, a partir de 30 minutos (p < 0,001). A proporção de pacientes que reagiu ao tubo traqueal no momento da desintubação foi significantemente menor em Lido (p < 0,005). A incidência de odinofagia foi significantemente menor em Lido no primeiro dia de pós-operatório (p < 0,05). A incidência de tosse e rouquidão não diferiu entre os grupos. CONCLUSÕES: Durante ventilação artificial, empregando-se a mistura de oxigênio e N2O, a insuflação do balonete com lidocaína 2% alcalinizada impede que ocorra aumento significante da pressão no balonete e determina maior tolerância ao tubo traqueal e menor incidência de odinofagia no pós-operatório, podendo então ser considerada mais segura e com maior efetividade.
Resumo:
Background: Persistent air leak after pulmonary resection is a difficult complication for thoracic surgeons to manage. Objectives: To show the results of our experience treating persistent pleuropulmonary air leak with autologous blood and review the literature on this specific method of treatment. Methods: Retrospective study of patients with persistent aerial pleuropulmonary fistula treated with autologous blood. The patient's own blood was collected from a peripheral vein and directly introduced through the pleural drain. An inverted siphon was located in the drainage system to avoid prolonged clamping of the drain. This siphon impeded blood return but not air escape. Results: Between January 2001 and August 2008, 27 patients were treated by the above method. Patient age ranged from 2 to 74 years, and 78% were male. Each procedure used a mean quantity of 92 ml blood. Mean persistent air leak time before pleurodesis was 10.6 days and mean time to fistula resolution after pleurodesis was 1.5 days. Twenty-three (85%) patients had persistent pleuropulmonary air leak closed with the above procedure. Conclusion: Treating persistent pleuropulmonary air leak with autologous blood is promising, but further studies are required to quantify its real effectiveness. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
dThe objective of the present study was to evaluate DNA damage level in blood leukocytes from diabetic and non-diabetic female Wistar rats exposed to air or to cigarette smoke, and to correlate the findings with levels of DNA damage detected in blood leukocyte samples from their fetuses. A total of 20 rats were distributed into four experimental groups: non-diabetic (control; G1) and diabetic exposed to filtered air (G2): non-diabetic (G3) and diabetic (G4) exposed to cigarette smoke. Rats placed into whole-body exposure chambers were exposed for 30 min to filtered air (control) or to tobacco smoke generated from 10 cigarettes, twice a day, for 2 months. Diabetes was induced by a pancreatic beta-cytotoxic agent, streptozotocin (40 mg/kg b.w.). At day 21 of pregnancy, each rat was anesthetized and humanely killed to obtain maternal and fetal blood samples for genotoxicity analysis using the alkaline comet assay. G2, G3 and G4 dams presented higher DNA damage values in tail moment and tail length as compared to G1 group. There was a significant positive correlation between DNA damage levels in blood leukocyte samples from G2 and G3 groups (tail moment); G3 and G4 groups (tail length) and G3 group (tail intensity) and their fetuses. Thus, this study showed the association of severe diabetes and tobacco cigarette smoke exposure did not exacerbate levels of maternal and fetal DNA damages related with only diabetes or cigarette smoke exposure. Based on the results obtained and taking into account other published data, maternal diabetes requires rigid clinical control and public health and education campaigns should be increased to encourage individuals, especially pregnant women, to stop smoking. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to investigate cellular migration induced by calcium hydroxide to air-pouch cavities in mice. The migration was more specific to neutrophil and was dose and time dependent (peaking 96 h after stimulation). This migration was inhibited by pretreatment with thalidomide, indomethacin, MK886, meloxicam, dexamethasone, MK886 associated with indomethacin, and MK886 associated with indomethacin and dexamethasone. The air-pouch exudate from animals stimulated with calcium hydroxide showed an increase of leukotriene-B4 (LTB4), interleukin-1 beta, tumor necrosis factor alpha (TNF-alpha), cytokine-induced neutrophil chemoattractant (KC), and macrophage inflammatory protein 2 (MIP-2) release. Pretreatment with 3% thioglycollate increased the macrophage population in the air pouch but did not change neutrophil migration. Depleting the resident mast cells through chronic pretreatment with compound 48/80 did not alter neutrophil migration in response to calcium hydroxide. It was possible to conclude that calcium hydroxide-induced neutrophil migration to the air-pouch cavity in mice is mediated by LTB4, TNF-alpha, KC, MIP-2, and prostaglandins, but it was not dependent on macrophages or mast cells.