897 resultados para ”Learning by doing”
Resumo:
Semi-supervised learning techniques have gained increasing attention in the machine learning community, as a result of two main factors: (1) the available data is exponentially increasing; (2) the task of data labeling is cumbersome and expensive, involving human experts in the process. In this paper, we propose a network-based semi-supervised learning method inspired by the modularity greedy algorithm, which was originally applied for unsupervised learning. Changes have been made in the process of modularity maximization in a way to adapt the model to propagate labels throughout the network. Furthermore, a network reduction technique is introduced, as well as an extensive analysis of its impact on the network. Computer simulations are performed for artificial and real-world databases, providing a numerical quantitative basis for the performance of the proposed method.
Resumo:
It has consistently been shown that agents judge the intervals between their actions and outcomes as compressed in time, an effect named intentional binding. In the present work, we investigated whether this effect is result of prior bias volunteers have about the timing of the consequences of their actions, or if it is due to learning that occurs during the experimental session. Volunteers made temporal estimates of the interval between their action and target onset (Action conditions), or between two events (No-Action conditions). Our results show that temporal estimates become shorter throughout each experimental block in both conditions. Moreover, we found that observers judged intervals between action and outcomes as shorter even in very early trials of each block. To quantify the decrease of temporal judgments in experimental blocks, exponential functions were fitted to participants’ temporal judgments. The fitted parameters suggest that observers had different prior biases as to intervals between events in which action was involved. These findings suggest that prior bias might play a more important role in this effect than calibration-type learning processes.
Resumo:
We investigate a recently proposed model for decision learning in a population of spiking neurons where synaptic plasticity is modulated by a population signal in addition to reward feedback. For the basic model, binary population decision making based on spike/no-spike coding, a detailed computational analysis is given about how learning performance depends on population size and task complexity. Next, we extend the basic model to n-ary decision making and show that it can also be used in conjunction with other population codes such as rate or even latency coding.
Resumo:
Carrying out this research on the difficulties encountered by Bafoussam-Bamileke's native speakers learning English as their L2 helps to unveil many syntactic and phonological problems that require a great interest no only to teachers but also to learners in order to reach an acceptable level of accuracy and fluency. We have also provided some ways to solve those problems efficiently.
Resumo:
Learning is based on rules that can be elucidated by behavioural experiments. This article focuses on virtual experiments, in which non-associative learning (habituation, sensitization) and principles of associative learning (contiguity, inhibitory learning, generalization, overshadowing, positive and negative patterning) can be examined using 'virtual' honey bees in PER (Proboscis Reaction Extension) conditioning experiments. Users can develop experimental designs, simulate and document the experiments and find explanations and suggestions for the analysis of the learning experiments. The virtual experiments are based on video sequences and data from actual learning experiments. The bees' responses are determined by probability-based learning profiles.
Resumo:
Population coding is widely regarded as a key mechanism for achieving reliable behavioral decisions. We previously introduced reinforcement learning for population-based decision making by spiking neurons. Here we generalize population reinforcement learning to spike-based plasticity rules that take account of the postsynaptic neural code. We consider spike/no-spike, spike count and spike latency codes. The multi-valued and continuous-valued features in the postsynaptic code allow for a generalization of binary decision making to multi-valued decision making and continuous-valued action selection. We show that code-specific learning rules speed up learning both for the discrete classification and the continuous regression tasks. The suggested learning rules also speed up with increasing population size as opposed to standard reinforcement learning rules. Continuous action selection is further shown to explain realistic learning speeds in the Morris water maze. Finally, we introduce the concept of action perturbation as opposed to the classical weight- or node-perturbation as an exploration mechanism underlying reinforcement learning. Exploration in the action space greatly increases the speed of learning as compared to exploration in the neuron or weight space.
Resumo:
This study examined a new type of cognitive intervention. For four weeks, participants (ages 65 to 82) were instructed in professional acting techniques, followed by rehearsal and performance of theatrical scenes. Although the training was not targeted in any way to the tasks used in pre- and post-testing, participants produced significantly higher recall and recognition scores after the intervention. It is suggested that the cognitive effort involved in analyzing and adopting theatrical characters' motivations (and then experiencing those characters' mental/emotional states during performance) is responsible for the observed improvement. A secondary strand of this study showed that participants who were given annotated scripts in which the implied goals of the characters were made explicit demonstrated significantly faster access to the stored material, as measured by a computer latency task.
Resumo:
Perceptual learning can occur when stimuli are only imagined, i.e., without proper stimulus presentation. For example, perceptual learning improved bisection discrimination when only the two outer lines of the bisection stimulus were presented and the central line had to be imagined. Performance improved also with other static stimuli. In non-learning imagery experiments, imagining static stimuli is different from imagining motion stimuli. We hypothesized that those differences also affect imagery perceptual learning. Here, we show that imagery training also improves motion direction discrimination. Learning occurs when no stimulus at all is presented during training, whereas no learning occurs when only noise is presented. The interference between noise and mental imagery possibly hinders learning. For static bisection stimuli, the pattern is just the opposite. Learning occurs when presented with the two outer lines of the bisection stimulus, i.e., with only a part of the visual stimulus, while no learning occurs when no stimulus at all is presented.
Resumo:
This paper applies a policy analysis approach to the question of how to effectively regulate micropollution in a sustainable manner. Micropollution is a complex policy problem characterized by a huge number and diversity of chemical substances, as well as various entry paths into the aquatic environment. It challenges traditional water quality management by calling for new technologies in wastewater treatment and behavioral changes in industry, agriculture and civil society. In light of such challenges, the question arises as to how to regulate such a complex phenomenon to ensure water quality is maintained in the future? What can we learn from past experiences in water quality regulation? To answer these questions, policy analysis strongly focuses on the design and choice of policy instruments and the mix of such measures. In this paper, we review instruments commonly used in past water quality regulation. We evaluate their ability to respond to the characteristics of a more recent water quality problem, i.e., micropollution, in a sustainable way. This way, we develop a new framework that integrates both the problem dimension (i.e., causes and effects of a problem) as well as the sustainability dimension (e.g., long-term, cross-sectoral and multi-level) to assess which policy instruments are best suited to regulate micropollution. We thus conclude that sustainability criteria help to identify an appropriate instrument mix of end-of-pipe and source-directed measures to reduce aquatic micropollution.
Resumo:
SDC has been involved in rural development in Cabo Delgado for more than 30 years. Shortly after the independence of Mozambique, projects in water supply and integrated rural development were initiated. The silvoagropastoral project FO9 based in Mueda was a very early experience in forestry in Cabo Delgado. Andreas Kläy was responsible for the forestry sector in FO9 for 3 years in the early 1980s and had an opportunity to initiate an exchange of ideas and experience in rural development theory and approaches with Yussuf Adam, who was doing research in human anthropology and history in the province. 25 years later, the current situation of forest management in Cabo Delgado was reassessed, with a specific focus on concessions in the North. The opportunity for a partnership between the MITI SA, the University of Eduardo Mondlane, and CDE was created on the basis of this preliminary study1. The aim of this partnership is to generate knowledge and develop capacity for sustainable forest management. The preliminary study showed that “…we have to face weaknesses and would like to start a learning process with the main institutions, organisations, and stakeholder groups active in forest management and research in the North of Cabo Delgado. This learning process will involve studies supported by competent research institutions and workshops …” The specific objectives of ESAPP project Q804 are the following: 1. Contribute to understanding of the forestry sector; 2. Capacity development for professionals and academics; 3. Support for the private sector and the local forest service; 4. Support data generation at Cabo Delgado's Provincial Service; 5. Capacity development for Swiss academic institutions (CDE and ETHZ). A conceptual planning platform was elaborated as a basis for cooperation and research in the partnership (cf. Annex 1). The partners agreed to work on two lines of research: biophysical and socio-economic. In order to ensure a transdisciplinary approach, disciplinary research is anchored in common understanding in workshops based on the LforS methods. These workshops integrate the main stakeholders in the local context of the COMADEL concession in Nangade District managed by MITI SA, and take place in the village of Namiune. The research team observed that current management schemes consist mainly of strategies of nature mining by most stakeholders involved. Institutional settings - formal and informal - have little impact due to weak capacity at the local level and corruption. Local difficulties in a remote rural area facilitate external access to resources and are perpetuated by the loss of benefits. The benefits of logging remain at the top level (economic and political elites). The interests of the owners of the concession in stopping the loss of resources caused by this regime offers a unique opportunity to intervene in the logic of resource degradation and agony in rural development and forest management.
Resumo:
This study examined the effectiveness of discovery learning and direct instruction in a diverse second grade classroom. An assessment test and transfer task were given to students to examine which method of instruction enabled the students to grasp the content of a science lesson to a greater extent. Results demonstrated that students in the direct instruction group scored higher on the assessment test and completed the transfer task at a faster pace; however, this was not statistically significant. Results also suggest that a mixture of instructional styles would serve to effectively disseminate information, as well as motivate students to learn.
Resumo:
—Microarray-based global gene expression profiling, with the use of sophisticated statistical algorithms is providing new insights into the pathogenesis of autoimmune diseases. We have applied a novel statistical technique for gene selection based on machine learning approaches to analyze microarray expression data gathered from patients with systemic lupus erythematosus (SLE) and primary antiphospholipid syndrome (PAPS), two autoimmune diseases of unknown genetic origin that share many common features. The methodology included a combination of three data discretization policies, a consensus gene selection method, and a multivariate correlation measurement. A set of 150 genes was found to discriminate SLE and PAPS patients from healthy individuals. Statistical validations demonstrate the relevance of this gene set from an univariate and multivariate perspective. Moreover, functional characterization of these genes identified an interferon-regulated gene signature, consistent with previous reports. It also revealed the existence of other regulatory pathways, including those regulated by PTEN, TNF, and BCL-2, which are altered in SLE and PAPS. Remarkably, a significant number of these genes carry E2F binding motifs in their promoters, projecting a role for E2F in the regulation of autoimmunity.
Resumo:
Problem-based learning has been applied over the last three decades to a diverse range of learning environments. In this educational approach, different problems are posed to the learners so that they can develop different solutions while learning about the problem domain. When applied to conceptual modelling, and particularly to Qualitative Reasoning, the solutions to problems are models that represent the behaviour of a dynamic system. The learner?s task then is to bridge the gap between their initial model, as their first attempt to represent the system, and the target models that provide solutions to that problem. We propose the use of semantic technologies and resources to help in bridging that gap by providing links to terminology and formal definitions, and matching techniques to allow learners to benefit from existing models.
Resumo:
This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses the self-election of heterogeneous specialized tasks by autonomous robots. In this paper we focus on a specifically distributed or decentralized approach as we are particularly interested on decentralized solution where the robots themselves autonomously and in an individual manner, are responsible of selecting a particular task so that all the existing tasks are optimally distributed and executed. In this regard, we have established an experimental scenario to solve the corresponding multi-tasks distribution problem and we propose a solution using two different approaches by applying Ant Colony Optimization-based deterministic algorithms as well as Learning Automata-based probabilistic algorithms. We have evaluated the robustness of the algorithm, perturbing the number of pending loads to simulate the robot’s error in estimating the real number of pending tasks and also the dynamic generation of loads through time. The paper ends with a critical discussion of experimental results.