995 resultados para wheat form
Resumo:
A robust vaginal immune response is considered essential for an effective prophylactic vaccine that prevents transmission of HIV and other sexually acquired diseases. Considerable attention has recently focused on the potential of vaginally administered vaccines as a means to induce such local immunity. However, the potential for vaccination at this site remains in doubt as the vaginal mucosa is generally considered to have low immune inductive potential. In the current study, we explored for the first time the use of a quick release, freeze-dried, solid dosage system for practical vaginal administration of a protein antigen. These solid dosage forms overcome the common problem associated with leakage and poor retention of vaginally administered antigen solutions. Mice were immunized vaginally with H4A, an HIV gp41 envelope based recombinant protein, using quick release, freeze-dried solid rods, and the immune responses compared to a control group immunized via subcutaneous H4A injection. Vaginally immunized mice failed to elicit robust immune responses. Our detailed investigations, involving cytokine analysis, the stability of H4A in mouse cervicovaginal lavage, and elucidation of the state of H4A protein in the immediate-release dosage form, revealed that antigen instability in vaginal fluid, the state of the antigen in the dosage form, and the cytokine profile induced are all likely to have contributed to the observed lack of immunogenicity. These are important factors affecting vaginal immunization and provide a rational basis for explaining the typically poor and variable elicitation of immunity at this site, despite the presence of immune responsive cells within the vaginal mucosae. In future mucosal vaccine studies, a more explicit focus on antigen stability in the dosage form and the immune potential of available antigen-responsive cells is recommended. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
The concept of a body-to-body network, where smart communicating devices carried or worn by a person are used to form a wireless network with devices situated on other nearby persons. New innovations in this area will see the form factor of smart devices being modified, so that they may be worn on the human body or integrated into clothing, in the process creating a new generation of smart people. Applications of body-to-body networking will extend well beyond the support of cellular and Wi-Fi networks. They will also be used in short-range covert military applications, first responder applications, team sports and used to interconnect body area networks (BAN). Security will be a major issue as routing between multiple nodes will increase the risk of unauthorized access and compromise sensitive data. This will add complexity to the medium access layer (MAC) and network management. Antennas designed to operate in body centric communications systems may be broadly categorized as on- or off-body radiators, according to their radiation pattern characteristics when mounted on the human body.
Propagation and antennas considerations for internetworking BANs to form body-to-body networks (BBN)
Resumo:
A recombinant cytoplasmic preparation of lysine: N6-hydroxylase, IucD398, with a deletion of 47 amino acids at the N-terminus, was purified to homogeneity. IucD398 is capable of N-hydroxylation of L-lysine upon supplementation with FAD and NADPH. The enzyme is stringently specific with L-lysine and (S)-2-aminoethyl-L-cysteine serving as substrates. Protonophores, FCCP and CCCP, as well as cinnamylidene, have been found to serve as potent inhibitors of lysine: N6-hydroxylation by virtue of their ability to interfere in the reduction of the flavin cofactor.