998 resultados para visible storage
Resumo:
Low-cost optical switches based on SLMs have conventionally been considered unsuitable for packet switching due to slow reconfiguration time. In this paper, we demonstrate that the constraint of SLM reconfiguration time in a hybrid three-stage electronic/optical switching node architecture can be compensated through the utilization of MPLS label switching mechanism to achieve the best performance for SAN applications. © 2012 SEE.
Resumo:
A fundamental study of visible diffraction effects from patterned graphene layers is presented. By patterning graphene into optical gratings, visible diffraction from graphene is experimentally measured as a function of the number of layers and visible wavelengths. A practical application of these effects is also presented, by demonstrating an optical hologram based on graphene. A high resolution (pixel size 400 nm) intensity hologram is fabricated which, in response to incident laser light, generates a visible image. These findings suggest that visible diffraction in graphene can find practical application in holograms and should also be considered during the design and characterisation of graphene-based optical applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Mechanical degradation is thought to be one of the causes of capacity fade within Lithium-Ion batteries. In this work we develop a coupled stress-diffusion model for idealized spherical storage particles, which is analogous to the development of thermal strains. We then non-dimensionalize the model and identify three important parameters that control the development of stress within these particles. We can therefore use a wide number of values for these parameters to make predictions about the stress responses of different materials. The maximum stress developed within the particle for different values of these parameters are plotted as stress maps. A two dimensional model of a battery was then developed, in order to study the effect of particle morphology. Copyright © 2012 by ASME.
Resumo:
An integrated 2-D model of a lithium ion battery is developed to study the mechanical stress in storage particles as a function of material properties. A previously developed coupled stress-diffusion model for storage particles is implemented in 2-D and integrated into a complete battery system. The effect of morphology on the stress and lithium concentration is studied for the case of extraction of lithium in terms of previously developed non-dimensional parameters. These non-dimensional parameters include the material properties of the storage particles in the system, among other variables. We examine particles functioning in isolation as well as in closely-packed systems. Our results show that the particle distance from the separator, in combination with the material properties of the particle, is critical in predicting the stress generated within the particle. © 2012 Springer-Verlag.
Resumo:
In order to improve algal biofuel production on a commercial-scale, an understanding of algal growth and fuel molecule accumulation is essential. A mathematical model is presented that describes biomass growth and storage molecule (TAG lipid and starch) accumulation in the freshwater microalga Chlorella vulgaris, under mixotrophic and autotrophic conditions. Biomass growth was formulated based on the Droop model, while the storage molecule production was calculated based on the carbon balance within the algal cells incorporating carbon fixation via photosynthesis, organic carbon uptake and functional biomass growth. The model was validated with experimental growth data of C. vulgaris and was found to fit the data well. Sensitivity analysis showed that the model performance was highly sensitive to variations in parameters associated with nutrient factors, photosynthesis and light intensity. The maximum productivity and biomass concentration were achieved under mixotrophic nitrogen sufficient conditions, while the maximum storage content was obtained under mixotrophic nitrogen deficient conditions.
Resumo:
In order to improve algal biofuel production on a commercial-scale, an understanding of algal growth and fuel molecule accumulation is essential. A mathematical model is presented that describes biomass growth and storage molecule (TAG lipid and starch) accumulation in the freshwater microalga Chlorella vulgaris, under mixotrophic and autotrophic conditions. Biomass growth was formulated based on the Droop model, while the storage molecule production was calculated based on the carbon balance within the algal cells incorporating carbon fixation via photosynthesis, organic carbon uptake and functional biomass growth. The model was validated with experimental growth data of C. vulgaris and was found to fit the data well. Sensitivity analysis showed that the model performance was highly sensitive to variations in parameters associated with nutrient factors, photosynthesis and light intensity. The maximum productivity and biomass concentration were achieved under mixotrophic nitrogen sufficient conditions, while the maximum storage content was obtained under mixotrophic nitrogen deficient conditions. © 2014 Elsevier Ltd.
Resumo:
Silicon nitride films were deposited by plasma-enhanced chemical-vapour deposition. The films were then implanted with erbium ions to a concentration of 8 x 10(20) cm(-3). After high temperature annealing, strong visible and infrared photoluminescence (PL) was observed. The visible PL consists mainly of two peaks located at 660 and 750 nm, which are considered to originate from silicon nanocluster (Si-NCs) and Si-NC/SiNx interface states. Raman spectra and HRTEM measurements have been performed to confirm the existence of Si-NCs. The implanted erbium ions are possibly activated by an energy transfer process, leading to a strong 1.54 mu m PL.
Resumo:
In this article, a simple and flexible electron-beam coevaporation (EBCE) technique has been reported of fabrication of the silicon nanocrystals (Si NCs) and their application to the nonvolatile memory. For EBCE, the Si and SiOx(x=1 or 2) were used as source materials. Transmission electron microscopy images and Raman spectra measurement verified the formation of the Si NCs. The average size and area density of the Si NCs can be adjusted by increasing the Si:O weight ratio in source material, which has a great impact on the crystalline volume fraction of the deposited film and on the charge storage characteristics of the Si NCs. A memory window as large as 6.6 V under +/- 8 V sweep voltage was observed for the metal-oxide-semiconductor capacitor structure with the embedded Si NCs.
Resumo:
The response of photonic memory effect in I-V characteristics of a specially designed photonic memory cell was reported. When the cell is biased in a storage mode, the optical excitation with the photon's energy larger than the energy gap gives rise to a step-like jump in the current. A set-up was used to measure the transient photocurrent at the biases where the step-like jump showed up. It is proved that the falling transient edge of the photocurrent, as the photoexcitation turns off, mainly maps the decaying of electrons and holes, which were previously stored in the cell during the illumination. Its time constant is a measure of photonic memory time.
Resumo:
p(+)-pi-n(-)-n(+) ultraviolet photodetectors based on 4H-SiC homoepilayers have been presented. The growth of the 4H-SiC homoepilayers was carried out in a LPCVD system. The size of the active area of the photodetectors was 300 x 300 mu m(2). The dark and illuminated I-V characteristics had been measured at reverse biases form 0 to 20 V at room temperature, and the illuminated current was at least two orders of magnitude than that of dark current below 13 V bias. The peak value zones of the photoresponse were located at 280-310 nm at different reverse biases, and the peak value located at 300 nm was 100 times greater than the cut-off response value in 380 nm at a bias of 10V, which showed the device had good visible blind performance. A small red-shift about 5 nm on the peak responsivity occurred when reverse bias increased from 5 to 15 V. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
ZnO nanoparticles were synthesized in ethanolic solution using a sol-gel method. The structural and optical properties were investigated by X-ray diffraction, transmission electron microscopy, UV absorption, and photoluminescence. After annealing at 200 degrees C, the particle size is increased and the peak of defect luminescence in the visible region is changed. A yellow emission was observed in the as-prepared sample and a green emission in the annealed sample. The change of the visible emission is related to oxygen defects. Annealing in the absence of oxygen would increase oxygen vacancies. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We report a new type of photonic memory cell based on a semiconductor quantum dot (QD)-quantum well (QW) hybrid structure, in which photo-generated excitons can be decomposed into separated electrons and holes, and stored in QW and QDs respectively. Storage and retrieval of photonic signals are verified by time-resolved photoluminescence experiments. A storage time in excess of 100ms has been obtained at a temperature of 10 K while the switching speed reaches the order of ten megahertz.