941 resultados para urinary crystals and precipitates
Resumo:
The aim of this study was to present a new methodology for evaluating the pelvic floor muscle (PFM) passive properties. The properties were assessed in 13 continent women using an intra-vaginal dynamometric speculum and EMG (to ensure the subjects were relaxed) in four different conditions: (1) forces recorded at minimal aperture (initial passive resistance); (2) passive resistance at maximal aperture; (3) forces and passive elastic stiffness (PES) evaluated during five lengthening and shortening cycles; and (4) percentage loss of resistance after 1 min of sustained stretch. The PFMs and surrounding tissues were stretched, at constant speed, by increasing the vaginal antero-posterior diameter; different apertures were considered. Hysteresis was also calculated. The procedure was deemed acceptable by all participants. The median passive forces recorded ranged from 0.54 N (interquartile range 1.52) for minimal aperture to 8.45 N (interquartile range 7.10) for maximal aperture while the corresponding median PES values were 0.17 N/mm (interquartile range 0.28) and 0.67 N/mm (interquartile range 0.60). Median hysteresis was 17.24 N∗mm (interquartile range 35.60) and the median percentage of force losses was 11.17% (interquartile range 13.33). This original approach to evaluating the PFM passive properties is very promising for providing better insight into the patho-physiology of stress urinary incontinence and pinpointing conservative treatment mechanisms.
Resumo:
The aim of this study was to present a new methodology for evaluating the pelvic floor muscle (PFM) passive properties. The properties were assessed in 13 continent women using an intra-vaginal dynamometric speculum and EMG (to ensure the subjects were relaxed) in four different conditions: (1) forces recorded at minimal aperture (initial passive resistance); (2) passive resistance at maximal aperture; (3) forces and passive elastic stiffness (PES) evaluated during five lengthening and shortening cycles; and (4) percentage loss of resistance after 1 min of sustained stretch. The PFMs and surrounding tissues were stretched, at constant speed, by increasing the vaginal antero-posterior diameter; different apertures were considered. Hysteresis was also calculated. The procedure was deemed acceptable by all participants. The median passive forces recorded ranged from 0.54 N (interquartile range 1.52) for minimal aperture to 8.45 N (interquartile range 7.10) for maximal aperture while the corresponding median PES values were 0.17 N/mm (interquartile range 0.28) and 0.67 N/mm (interquartile range 0.60). Median hysteresis was 17.24 N∗mm (interquartile range 35.60) and the median percentage of force losses was 11.17% (interquartile range 13.33). This original approach to evaluating the PFM passive properties is very promising for providing better insight into the patho-physiology of stress urinary incontinence and pinpointing conservative treatment mechanisms.
Resumo:
Interstitial water analyses made at 12 sites during Leg 117 are used to define the nature of diagenetic reactions in organic-rich sediments on the Owen Ridge and Oman Margin. Minor variations in chloride concentration profiles are ascribed to past changes in bottom water salinity at two mid-depth margin sites and to upward migration of low salinity water at another. There is no evidence for subsurface brine movement, unlike the case on the Peru Margin. Dolomitization is widespread and accounts for the depletions of magnesium observed in pore waters at variable depths at nearly all sites. The mineral occurs both as disseminated euhedral limpid crystals and, in at least one location, in massive stringers. Formation of the latter is suggested to reflect precipitation during sea level transgressions when the sedimentation rate was low, but when productivity was high. Authigenic carbonate fluorapatite is also widespread, the phosphorus being derived from the breakdown of organic matter. Sulfate is quantitatively depleted at depth at most locations but the rate of depletion is markedly less than that observed on the Peru Margin where sedimentation is also similarly influenced by high rates of upwelling. The reason for this contrast is not clear and merits further investigation.
Resumo:
Bakgrund: Urinvägsinfektion (UVI) är en av de vanligaste infektionerna hos äldre kvinnor. Escherichia coli (E-coli) är den vanligaste bakterien vid UVI. Äldre kvinnor lider när de är drabbade av UVI och det är sjuksköterskans uppgift att bland annat förebygga sjukdom och lindra lidande. Syfte: Att beskriva riskfaktorer och förebyggande omvårdnadsåtgärder mot UVI hos äldre kvinnor. Metod: Litteraturstudie, med databassökning genom databaser speciellt inriktade på vård och omvårdnad, CINAHL, PubMed, WEB OF SCIENCE och Medline. 15 artiklar har använts till resultatet. Resultat: Recidiverande UVI, diabetes, urininkontinens, smittspridning och förstoppning är riskfaktorer att drabbas av UVI. God hygien och regelbunden tillförsel av vätska ses som god evidensbaserad omvårdnadsåtgärd mot UVI. Ökad tillförsel av vätska förkastas, Tranbärstillägg behöver ytterligare forskning. Slutsats. Hög hygieniskstandard genom de basala hygienrutinerna är en viktig förebyggande åtgärd mot UVI.
Resumo:
In Nuclear Medicine, radioiodine, in various chemical forms, is a key tracer used in diagnostic practices and/or therapy. Due to its high volatility, medical professionals may incorporate radioactive iodine during the preparation of the dose to be administered to the patient. In radioactive iodine therapy doses ranging from 3.7 to 7.4GBq per patient are employed. Thus, aiming at reducing the risk of occupational contamination, we developed a low cost filter to be installed at the exit of the exhaust system where doses of radioactive iodine are fractionated, using domestic technology. The effectiveness of radioactive iodine retention by silver impregnated silica [10%] crystals and natural activated carbon was verified using radiotracer techniques. The results showed that natural activated carbon is effective for I2 capture for a large or small amount of substrate but its use is restricted due to its low flash point (150º C). Besides, when poisoned by organic solvents, this flash point may become lower, causing explosions if absorbing large amounts of nitrates. To hold the CH3I gas, it was necessary to increase the volume of natural activated carbon since it was not absorbed by SiO2 + Ag crystals. We concluded that, for an exhaust flow range of (306 4) m3/h, a double stage filter using SiO2 + Ag in the first stage and natural activated carbon in the second is sufficient to meet radiological safety requirements.
Resumo:
Cette thèse présente les étapes de fabrication et les résultats de la caractérisation des modèles de tissu biologique fabriqués en utilisant des cristaux liquides et des polymères qui permettent de contrôler la diffusion et la transmission de la lumière par un champ électrique. Ce champ électrique entraîne un changement d’orientation des molécules de cristaux liquides, ce qui induit des variations locales de l’indice de réfraction dans ces matériaux. Nous avons utilisé ce contrôle de l’indice de réfraction pour contrôler le niveau de diffusion et de transmission dans différents types d’échantillons. Les échantillons utilisés sont faits a) de cristaux liquides purs, b) de sphères de polymère dans un environnement de cristaux liquides, c) de cristaux liquides ou de gouttelettes de cristaux liquides dans un environnement de polymère. Les travaux réalisés nous ont permis de proposer une méthode électro-optique pour simuler, à l’aide de cristaux liquides, des milieux diffusants tels que les tissus biologiques. Dans la recherche de modèles, nous avons montré qu’il est possible de contrôler, par la fréquence du champ électrique, des gouttelettes de cristaux liquides dispersées dans une matrice de polymère contenant des ions lithium. Une sensibilité sélective à la fréquence de la tension électrique appliquée en fonction de la taille des gouttelettes est observée. Par la suite, nous avons démontré l’effet de « quenching » interférentiel de la diffusion pour une sonde optique cohérente en étudiant des modèles non alignés (clustérisés) de cristaux liquides. Nous avons aussi démontré des applications potentielles de ce phénomène tel le filtrage en longueur d’onde par l’ajustement d’un champ électrique. Nous avons ensuite démontré que l’utilisation des cristaux liquides - dits « dual-frequency » - permet une modulation rapide des états ou des structures du matériau ainsi que de la transmission et de la diffusion de lumière de ce dernier. Enfin, nous avons aussi découvert que ces modèles peuvent être contrôlés pour retrouver le degré de polarisation de la lumière diffusée.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
In many studies of the side-chain liquid crystalline polymers (SCLCPs) bearing azobenzene mesogens as pendant groups, obtaining the orientation of azobenzene mesogens at a macroscopic scale as well as its control is important, because it impacts many properties related to the cooperative motion characteristic of liquid crystals and the trans-cis photoisomerization of the azobenzene molecules. Various means can be used to align the mesogens in the polymers, including rubbed surface, mechanical stretching or shearing, and electric or magnetic field. In the case of azobenzene-containing SCLCPs, another method consists in using linearly polarized light (LPL) to induce orientation of azobenzene mesogens perpendicular to the polarization direction of the excitation light, and such photoinduced orientation has been the subject of numerous studies. In the first study realized in this thesis (Chapter 1), we carried out the first systematic investigation on the interplay of the mechanically and optically induced orientation of azobenzene mesogens as well as the effect of thermal annealing in a SCLCP and a diblock copolymer comprising two SCLCPs bearing azobenzene and biphenyl mesogens, respectively. Using a supporting-film approach previously developed by our group, a given polymer film can be first stretched in either the nematic or smectic phase to yield orientation of azobenzene mesogens either parallel or perpendicular to the strain direction, then exposed to unpolarized UV light to erase the mechanically induced orientation upon the trans–cis isomerization, followed by linearly polarized visible light for photoinduced reorientation as a result of the cis–trans backisomerization, and finally heated to different LC phases for thermal annealing. Using infrared dichroism to monitor the change in orientation degree, the results of this study have unveiled complex and different orientational behavior and coupling effects for the homopolymer of poly{6-[4-(4-methoxyphenylazo)phenoxy]hexyl methacrylate} (PAzMA) and the diblock copolymer of PAzMA-block- poly{6-[4-(4-cyanophenyl) phenoxy]hexyl methacrylate} (PAzMA-PBiPh). Most notably for the homopolymer, the stretching-induced orientation exerts no memory effect on the photoinduced reorientation, the direction of which is determined by the polarization of the visible light regardless of the mechanically induced orientation direction in the stretched film. Moreover, subsequent thermal annealing in the nematic phase leads to parallel orientation independently of the initial mechanically or photoinduced orientation direction. By contrast, the diblock copolymer displays a strong orientation memory effect. Regardless of the condition used, either for photoinduced reorientation or thermal annealing in the liquid crystalline phase, only the initial stretching-induced perpendicular orientation of azobenzene mesogens can be recovered. The reported findings provide new insight into the different orientation mechanisms, and help understand the important issue of orientation induction and control in azobenzene-containing SCLCPs. The second study presented in this thesis (Chapter 2) deals with supramolecular side-chain liquid crystalline polymers (S-SCLCPs), in which side-group mesogens are linked to the chain backbone through non-covalent interactions such as hydrogen bonding. Little is known about the mechanically induced orientation of mesogens in S-SCLCPs. In contrast to covalent SCLCPs, free-standing, solution-cast thin films of a S-SCLCP, built up with 4-(4’-heptylphenyl) azophenol (7PAP) H-bonded to poly(4-vinyl pyridine) (P4VP), display excellent stretchability. Taking advantage of this finding, we investigated the stretching-induced orientation and the viscoelastic behavior of this S-SCLCP, and the results revealed major differences between supramolecular and covalent SCLCPs. For covalent SCLCPs, the strong coupling between chain backbone and side-group mesogens means that the two constituents can mutually influence each other; the lack of chain entanglements is a manifestation of this coupling effect, which accounts for the difficulty in obtaining freestanding and mechanically stretchable films. Upon elongation of a covalent SCLCP film cast on a supporting film, the mechanical force acts on the coupled polymer backbone and mesogenic side groups, and the latter orients cooperatively and efficiently (high orientation degree), which, in turn, imposes an anisotropic conformation of the chain backbone (low orientation degree). In the case of the S-SCLCP of P4VP-7PAP, the coupling between the side-group mesogens and the chain backbone is much weakened owing to the dynamic dissociation/association of the H-bonds linking the two constituents. The consequence of this decoupling is readily observable from the viscoelastic behavior. The average molecular weight between entanglements is basically unchanged in both the smectic and isotropic phase, and is similar to non-liquid crystalline samples. As a result, the S-SCLCP can easily form freestanding and stretchable films. Furthermore, the stretching induced orientation behavior of P4VP-7PAP is totally different. Stretching in the smectic phase results in a very low degree of orientation of the side-group mesogens even at a large strain (500%), while the orientation of the main chain backbone develops steadily with increasing the strain, much the same way as amorphous polymers. The results imply that upon stretching, the mechanical force is mostly coupled to the polymer backbone and leads to its orientation, while the main chain orientation exerts little effect on orienting the H-bonded mesogenic side groups. This surprising finding is explained by the likelihood that during stretching in the smectic phase (at relatively higher temperatures) the dynamic dissociation of the H-bonds allow the side-group mesogens to be decoupled from the chain backbone and relax quickly. In the third project (Chapter 3), we investigated the shape memory properties of a S-SCLCP prepared by tethering two azobenzene mesogens, namely, 7PAP and 4-(4'-ethoxyphenyl) azophenol (2OPAP), to P4VP through H-bonding. The results revealed that, despite the dynamic nature of the linking H-bonds, the supramolecular SCLCP behaves similarly to covalent SCLCP by exhibiting a two-stage thermally triggered shape recovery process governed by both the glass transition and the LC-isotropic phase transition. The ability for the supramolecular SCLCP to store part of the strain energy above T[subscript g] in the LC phase enables the triple-shape memory property. Moreover, thanks to the azobenzene mesogens used, which can undergo trans-cis photoisomerization, exposure the supramolecular SCLCP to UV light can also trigger the shape recovery process, thus enabling the remote activation and the spatiotemporal control of the shape memory. By measuring the generated contractile force and its removal upon turning on and off the UV light, respectively, on an elongated film under constant strain, it seems that the optically triggered shape recovery stems from a combination of a photothermal effect and an effect of photoplasticization or of an order-disorder phase transition resulting from the trans-cis photoisomerization of azobenzene mesogens.
Resumo:
It has been proposed that long-term consumption of diets rich in non-digestible carbohydrates (NDCs), such as cereals, fruit and vegetables might protect against several chronic diseases, however, it has been difficult to fully establish their impact on health in epidemiology studies. The wide range properties of the different NDCs may dilution their impact when they are combined in one category for statistical comparisons in correlations or multivariate analysis. Several mechanisms have been suggested to explain the protective effects of NDCs, including increased stool bulk, dilution of carcinogens in the colonic lumen, reduced transit time, lowering pH, and bacterial fermentation to short chain fatty acids (SCFA) in the colon. However, it is very difficult to measure SCFA in humans in vivo with any accuracy, so epidemiological studies on the impact of SCFA are not feasible. Most studies use dietary fibre (DF) or Non-Starch Polysaccharides (NSP) intake to estimate the levels, but not all fibres or NSP are equally fermentable. It has been proposed that long-term consumption of diets rich in non-digestible carbohydrates (NDCs), such as cereals, fruit and vegetables might protect against several chronic diseases, however, it has been difficult to fully establish their impact on health in epidemiology studies. The wide range properties of the different NDCs may dilution their impact when they are combined in one category for statistical comparisons in correlations or multivariate analysis. Several mechanisms have been suggested to explain the protective effects of NDCs, including increased stool bulk, dilution of carcinogens in the colonic lumen, reduced transit time, lowering pH, and bacterial fermentation to short chain fatty acids (SCFA) in the colon. However, it is very difficult to measure SCFA in humans in vivo with any accuracy, so epidemiological studies on the impact of SCFA are not feasible. Most studies use dietary fibre (DF) or Non-Starch Polysaccharides (NSP) intake to estimate the levels, but not all fibres or NSP are equally fermentable. The first aim of this thesis was the development of the equations used to estimate the amount of FC that reaches the human colon and is fermented fully to SCFA by the colonic bacteria. Therefore, several studies were examined for evidence to determine the different percentages of each type of NDCs that should be included in the final model, based on how much NDCs entered the colon intact and also to what extent they were fermented to SCFA in vivo. Our model equations are FC-DF or NSP$ 1: 100 % Soluble + 10 % insoluble + 100 % NDOs¥ + 5 % TS** FC-DF or NSP 2: 100 % Soluble + 50 % insoluble + 100 % NDOs + 5 % TS FC-DF* or NSP 3: 100 % Soluble + 10 % insoluble + 100 % NDOs + 10 % TS FC-DF or NSP 4: 100 % Soluble + 50 % insoluble + 100 % NDOs + 10 % TS *DF: Dietary fibre; **TS: Total starch; $NSP: non-starch polysaccharide; ¥NDOs: non-digestible oligosaccharide The second study of this thesis aimed to examine all four predicted FC-DF and FC-NSP equations developed, to estimate FC from dietary records against urinary colonic NDCs fermentation biomarkers. The main finding of a cross-sectional comparison of habitual diet with urinary excretion of SCFA products, showed weak but significant correlation between the 24 h urinary excretion of SCFA and acetate with the estimated FC-DF 4 and FC-NSP 4 when considering all of the study participants (n = 122). Similar correlations were observed with the data for valid participants (n = 78). It was also observed that FC-DF and FC-NSP had positive correlations with 24 h urinary acetate and SCFA compared with DF and NSP alone. Hence, it could be hypothesised that using the developed index to estimate FC in the diet form dietary records, might predict SCFA production in the colon in vivo in humans. The next study in this thesis aimed to validate the FC equations developed using in vitro models of small intestinal digestion and human colon fermentation. The main findings in these in vitro studies were that there were several strong agreements between the amounts of SCFA produced after actual in vitro fermentation of single fibre and different mixtures of NDCs, and those predicted by the estimated FC from our developed equation FC-DF 4. These results which demonstrated a strong relationship between SCFA production in vitro from a range of fermentations of single fibres and mixtures of NDCs and that from the predicted FC equation, support the use of the FC equation for estimation of FC from dietary records. Therefore, we can conclude that the newly developed predicted equations have been deemed a valid and practical tool to assess SCFA productions for in vitro fermentation.
Resumo:
Introduction: Few data is available about the hydration status of active adolescents in free living conditions. Cell dehydration may be prevalent in healthy, free-living children at school and they could be in a state of chronic voluntary dehydration. Objective: This study aims to describe hydration status assessed by Free Water Reserve (FWR) in adolescents. Method: Two hundred participants (118 girls), aged 13-18 years completed the study. Urinary volume (ml/d) and urinary osmolality (mosm/kg) were measured by one 24h urinary collection, and coefficient of creatinine was used to validate completeness of urine collections. FWR (measured urine volume minus the obligatory urine volume) was used for characterization of hydration status. Positive values of FWR indicate euhydration, negative values the risk of hypo-hydration. Results: Median urinary volume excretion was 1100.0 ml/d for boys and 1025.0 ml/d for girls (p=0.923). Mean urinary osmolality was 715.7±172.3 mosm/kg for boys and 597.42±193.1 mosm/kg for girls (p=0.247). Median FWR (ml/24h) was positive in both sex groups (173.2 ml/d in boys and 373.2 ml/d in girls); however, 40.2% of boys and 31.4% of girls (p=0.195) were at risk of hypo-hydration status. Conclusions: In this sample of adolescents approximately one third was classified as at risk of hypo-hydration status. Preventive measures to increase the level of total water intake should be considered.
Resumo:
Introducción Las pacientes con miomas uterinos pueden llegar a sufrir de síntomas urinarios y de disfunción sexual. Es para nosotros importante conocer la frecuencia de estas patologías en pacientes con miomas con indicación de cirugía atendidos en el Hospital Universitario Mayor Méderi y la relación entre estas tres entidades. Metodología Estudio cuasi experimental de antes-después. El estudio se encuentra dividido en dos fases, en esta primera fase a las pacientes se les aplicó los cuestionarios FSFI, IIQ-7 y UDI-6 antes de realizar el procedimiento quirúrgico. En una segunda fase se realizará un nuevo abordaje a los 6 y 12 meses donde se aplicarán los mismos instrumentos. Se utilizó coeficiente de Spearman y Kruskall-Wallis para evaluar la relación. Resultados En esta primera fase se incluyeron 81 participantes, con una mediana de años de 46 (RIQ=42-49) mínimo 33 y máximo 71 años. La mediana de miomas fue de 1 (RIQ1-2) máximo 5 miomas. El resultado total de la FSFI fue de 21(RIQ=18,5-25,5). La mediana de la escala UDI -6 fue de 50,4 (RIQ=0-31,2) y la mediana de IIQ-7 fue de 4,75 (RIQ=0-23,7). Se presentó una correlación negativa débil entre los puntajes de FSFI y los cuestionarios UDI-6 (-0.3604) e IIQ 7 (-0.3530), con una prevalencia de riesgo de disfunción sexual de 61%. Conclusiones En esta primera fase de la investigación se pudo observar una existencia de correlación entre la función sexual y la sintomatología urinaria. La prevalencia de disfunción sexual es mayor que en población de mujeres sin patología de miomas uterino.
Resumo:
The disintegration of stone materials used in sculpture and architecture due to the crystallization of salts is capable of irreparably damaging artistic objects and historic buildings. A number of phosphonates and carboxylates were tested here as potential crystallization modifiers for sodium carbonate crystallization. Precipitated phases during crystallization induced either by cooling or by evaporation tests were nahcolite (NaHCO3), natron (Na2CO3∙10H2O) and thermonatrite (Na2CO3∙H2O), identified using X-ray diffraction. By using the thermodynamic code PHREEQC and the calculation of the nucleation rate it was demonstrated that nahcolite had to be first phase formed during both tests. The formation of the other phases depended on the experimental conditions under which the two tests were conducted. Nahcolite nucleation is strongly inhibited in the presence of sodium citrate tribasic dihydrate (CA), polyacrylic acid 2100MW (PA) and etidronic acid (HEDP), when the additives are dosed at appropriate concentrations and the pH range of the resulting solution is about 8. Electrostatic attraction generated between the deprotonated organic additives and the cations present in solution appears to be the principal mechanism of additive-nahcolite interaction. Salt weathering tests, in addition to mercury intrusion porosimetry tests allowed to quantify the damage induced by such salts. FESEM observation of both salts grown on calcite single crystals and in limestone blocks subjected to salt crystallization tests allowed to identify the effect of these additives on crystal growth and development. The results show that PA seems to be the best inhibitor, while CA and HEDP, which show similar behaviors, are slightly less effective. The use of such effective crystallization inhibitors may lead to more efficient preventive conservation of ornamental stone affected by crystallization damage due to formation of sodium carbonate crystals.
Resumo:
Objective: This study was designed to determine the frequency and causative agent(s) of urinary tract infections (UTIs) in individuals with symptoms of urinary tract infections in Enugu State of Southeast Nigeria, and to determine the antibiotic susceptibility pattern of microbial agents isolated from urine culture.Methods: The study involved 211 individuals (149 females and 62 males) clinically suspected for UTI. Urine samples were collected by the mid-stream ‘clean catch’ method and tested using standard procedures. Antibiotic susceptibility of the isolated pathogens was tested using the Kirby-Bauer technique according to the Clinical and Laboratory Standards Institute (CLSI) guidelines.Results: Microscopy of centrifuged urine samples showed 16 patients had pyuria while 54 had pus cells. Calcium oxalate crystals were found in 14 samples. Urinalysis performed with urine samples showed 17 had protein; seven were nitrite positive and three had moderate to high glucose concentration. Fifty-four urine samples (36.2%) from females and 12 (19.4%) from males showed significant growth upon culture. Gram stain and biochemical tests identified nine different organisms with Escherichia coli as the most common isolated species. Forty three randomly selected strains were further tested for their susceptibility against a panel of antibiotics. Thirty isolates (81.08%) were resistant to four or more antibiotics with the highest resistance shown by E. coli (76.67%). All the Gram- negative isolates were resistant to Ampicilox, Cefuroxime and Amoxicillin.Conclusion: Urinary tract infections were found more in females in the area under study. As found in other studies, E. coli was the most predominant isolate, although other organisms seem to be on the increase.
Resumo:
Urinary stones resected from urinary bladders of patients hailing from Kollam district of Kerala State, India were analyzed by SEM, XRD and by thermal analysis techniques. The analytical results indicate that, stones have different composition, i.e., calcium phosphate, calcium phosphate hydroxide and sodium calcium carbonate. Infrared spectral studies also reveal the presence of phosphates or carbonates in these samples. Further, IR spectral investigations have revealed that amorphous carbonated species are occupied in PO4 sites in calcium phosphate type stone and OH sites in calcium phosphate hydroxide sample. Thermal studies of these samples also reveal that, carbon dioxide is released from carbonated samples upon heating which is related to amount of carbon content and bond strength. Crystals with defects and irregular morphology are grown inside the urinary bladder due to variation in crystal growth conditions
Resumo:
When NaCl precipitates out of a saturated solution, it forms anhydrous crystals of halite at temperatures above +0.11?C, but at temperatures below this threshold it instead precipitates as the dihydrate ‘‘hydrohalite,’’ NaCl * 2H2O. When sea ice is cooled, hydrohalite begins to precipitate within brine inclusions at about -23C. In this work, hydrohalite crystals are examined in laboratory experiments: their formation, their shape, and their response to warming and desiccation. Sublimation of a sea ice surface at low temperature leaves a lag deposit of hydrohalite, which has the character of a fine powder. The precipitation of hydrohalite in brine inclusions raises the albedo of sea ice, and the subsequent formation of a surface accumulation further raises the albedo. Although these processes have limited climatic importance on the modern Earth, they would have been important in determining the surface types present in regions of net sublimation on the tropical ocean in the cold phase of a Snowball Earth event. However, brine inclusions in sea ice migrate downward to warmer ice, so whether salt can accumulate on the surface depends on the relative rates of sublimation and migration. The migration rates are measured in a laboratory experiment at temperatures from -2C to -32C; the migration appears to be too slow to prevent formation of a salt crust on Snowball Earth.