963 resultados para tuberculosis treatment
Resumo:
We describe a novel approach to treatment planning for focal brachytherapy utilizing a biologically based inverse optimization algorithm and biological imaging to target an ablative dose at known regions of significant tumour burden and a lower, therapeutic dose to low risk regions.
Resumo:
The perturbation treatment previously given is extended to explain the process of hydrogen abstraction from the various hydrogen donor molecules by the triplet nπ* state of ketones or the ground state of the alkyl or alkoxy radical. The results suggest that, as the ionization energy of the donor bonds is decreased, the reaction is accelerated and it is not influenced by the bond strength of the donor bonds. The activation barrier in such reactions arises from a weakening of the charge resonance term as the ionization energy of the donor bond increases.
Resumo:
Mycobacterium tuberculosis H37Rv possesses an enzyme (referred to as ‘Y enzyme’) which catalyses in the presence of INH and NAD, the formation of a product, which turns yellow on acidification. The requirements for the reaction, such as enzyme concentration, INH concentration, etc., have been standardized. The substrate specificity of the enzyme with respect to INH and NAD has been determined. The reaction is specific for the INH-sensitive strain and is totally absent in INH-resistant strains. Furthermore, the ‘Y enzyme’ shows some characteristic features of a peroxidase in its requirement for oxygen and sensitivity to inhibition by various reagents. The requirements of this enzyme which is involved in the action of isoniazid inM. tuberculosis H37Rv is described for the first time.
Resumo:
Apples at 24 ± 2 °C were heated in a pilot scale hot air assisted (40 °C) continuous pentagonal microwave system, to evaluate the effectiveness of this treatment on insect mortality (variety Mutsu) and fruit quality (variety Granny Smith). An average temperature of 53.4 ± 1.3 °C at core, bottom and flesh of the apple was recorded at the end of the treatment. One hundred percent mortality of the most tolerant stage of Queensland fruit fly (Bactrocera tryoni, Froggatt) and Jarvis's fruit fly (Bactrocera jarvisi, Tryon), were observed when the Mortality value (M52, equivalent time of isothermal treatment at 52 °C) at the slowest heating point applicable for each experiment was ≥ 50 min and ≥ 37 min, respectively. Results showed that microwave heat treatment is effective for insect disinfestation without any adverse impact on total soluble solids, flesh or peel firmness of the treated apples. The treated apples recorded a significantly higher pH and lower ion leakage than the untreated apples after 3 or 4 weeks. Therefore, the microwave heat treatment has the potential to be developed as an alternative chemical free quarantine treatment against economically significant insect pests. Industrial relevance Hot air assisted microwave heating of fruits and vegetables, is more cost effective compared to vapour heat treatment and ionising radiation for disinfestation of insects. Microwave treatment is environmentally friendly compared to fumigation and chemical treatments. Hot air assisted microwave disinfestation can be performed at farms or centralised pack houses since the capital cost would be comparatively lower than vapour heat or ionising radiation treatments.
Resumo:
In 1916, the Jewish community of Boston established Beth Israel Hospital on Townsend Street in Roxbury to provide health care to immigrants in the area. Although accessible to everyone, the hospital provided Yiddish-speaking services for Eastern European Jewish immigrants and served kosher food, as well as conducted Jewish religious services. In 1928 the hospital entered into a teaching agreement with Harvard Medical School, Tufts University, and Simmons College. Shortly thereafter, the hospital moved to its current location in the Longwood area of Boston and expanded to a 220-bed operation. During 1935-1936, at the height of the Depression, Beth Israel spent 1.5 million dollars in free patient care and was only one of two local hospitals to offer health care to people on welfare. In 1996, Beth Israel Hospital merged with Deaconess Medical Center and became Beth Israel Deaconess Medical Center. This collection contains reports, pamphlets and hospital publications.
Resumo:
This greenhouse study investigated the efficacy of acibenzolar-S-methyl (Bion®) treatment of lower leaves of passionfruit, (Passiflora edulis f. sp. flavicarpa), on Passionfruit woodiness disease and activities of two pathogenesis-related proteins, chitinase and β-1,3-glucanase after inoculation with passionfruit woodiness virus (PWV). All Bion® concentrations reduced disease symptoms, but the concentration of 0.025 g active ingredient (a.i.)/l was the most effective, reducing disease severity in systemic leaves by 23, 29 and 30 compared with water-treated controls at 30, 40 and 50 days post inoculation (dpi) with PWV, respectively. Correspondingly, relative virus concentration as determined by DAS-ELISA in the upper, untreated leaves (new growth) above the site of inoculation at 50 dpi was reduced by 17 and 22 in plants treated with 0.025 and 0.05 g a.i./l, respectively. Bion® treatment and subsequent inoculation with PWV increased chitinase and β-1,3-glucanase activities in the new leaves above the site of inoculation at 30 dpi with PWV. It was concluded that optimal protective Bion® treatment concentrations were 0.025 and 0.05 g a.i./l.
Resumo:
A recent controversy in the United States over drug pricing by Turing Pharmaceuticals AG has raised larger issues in respect of intellectual property, access to medicines, and the Trans-Pacific Partnership (TPP). In August 2015, Turing Pharmaceuticals AG – a private biopharmaceutical company with offices in New York, the United States, and Zug, Switzerland - acquired the exclusive marketing rights to Daraprim in the United States from Impax Laboratories Incorporated. Martin Shkreli, Turing’s Founder and Chief Executive Officer, maintained: “The acquisition of Daraprim and our toxoplasmosis research program are significant steps along Turing’s path of bringing novel medications to patients with serious disorders, some of whom often go undiagnosed and untreated.” He emphasised: “We intend to invest in the development of new drug candidates that we hope will yield an even better clinical profile, and also plan to launch an educational effort to help raise awareness and improve diagnosis for patients with toxoplasmosis.” In September 2015, there was much public controversy over the decision of Martin Shkreli to raise the price of a 62 year old drug, Daraprim, from $US13.50 to $US750 a pill. The drug is particularly useful in respect to the treatment and prevention of malaria, and in the treatment of infections in individuals with HIV/AIDS. Daraprim is listed on the World Health Organization’s (WHO) List of Essential Medicines. In the face of much criticism, Martin Shkreli has said that he will reduce the price of Daraprim. He observed: “We've agreed to lower the price on Daraprim to a point that is more affordable and is able to allow the company to make a profit, but a very small profit.” He maintained: “We think these changes will be welcomed.” However, he has been vague and ambiguous about the nature of the commitment. Notably, the lobby group, Pharmaceutical Research and Manufacturers of America (PhARMA), disassociated itself from the claims of Turing Pharmaceuticals. The group said: “PhRMA members have a long history of drug discovery and innovation that has led to increased longevity and improved lives for millions of patients.” The group noted: “Turing Pharmaceutical is not a member of PhRMA and we do not embrace either their recent actions or the conduct of their CEO.” The biotechnology peak body Biotechnology Industry Organization also sought to distance itself from Turing Pharmaceuticals. A hot topic: United States political debate about access to affordable medicines This controversy over Daraprim is unusual – given the age of drug concerned. Daraprim is not subject to patent protection. Nonetheless, there remains a monopoly in respect of the marketplace. Drug pricing is not an isolated problem. There have been many concerns about drug pricing – particularly in respect of essential medicines for HIV/AIDS, tuberculosis, and malaria. This recent controversy is part of a larger debate about access to affordable medicines. The dispute raises larger issues about healthcare, consumer rights, competition policy, and trade. The Daraprim controversy has provided impetus for law reform in the US. US Presidential Candidate Hillary Clinton commented: “Price gouging like this in this specialty drug market is outrageous.” In response to her comments, the Nasdaq Biotechnology Index fell sharply. Hillary Clinton has announced a prescription drug reform plan to protect consumers and promote innovation – while putting an end to profiteering. On her campaign site, she has emphasised that “affordable healthcare is a basic human right.” Her rival progressive candidate, Bernie Sanders, was also concerned about the price hike. He wrote a letter to Martin Shkreli, complaining about the price increase for the drug Daraprim. Sanders said: “The enormous, overnight price increase for Daraprim is just the latest in a long list of skyrocketing price increases for certain critical medications.” He has pushed for reforms to intellectual property to make medicines affordable. The TPP and intellectual property The Daraprim controversy and political debate raises further issues about the design of the TPP. The dispute highlights the dangers of extending the rights of pharmaceutical drug companies under intellectual property, investor-state dispute settlement, and drug administration. Recently, the civil society group Knowledge Ecology International published a leaked draft of the Intellectual Property Chapter of the TPP. Knowledge Ecology International Director, James Love, was concerned the text revealed that the US “continues to be the most aggressive supporter of expanded intellectual property rights for drug companies.” He was concerned that “the proposals contained in the TPP will harm consumers and in some cases block innovation.” James Love feared: “In countless ways, the Obama Administration has sought to expand and extend drug monopolies and raise drug prices.” He maintained: “The astonishing collection of proposals pandering to big drug companies make more difficult the task of ensuring access to drugs for the treatment of cancer and other diseases and conditions.” Love called for a different approach to intellectual property and trade: “Rather than focusing on more intellectual property rights for drug companies, and a death-inducing spiral of higher prices and access barriers, the trade agreement could seek new norms to expand the funding of medical research and development (R&D) as a public good, an area where the US has an admirable track record, such as the public funding of research at the National Institutes of Health (NIH) and other federal agencies.” In addition, there has been much concern about the Investment Chapter of the TPP. The investor-state dispute settlement regime would enable foreign investors to challenge government policy making, which affected their investments. In the context of healthcare, there is a worry that pharmaceutical drug companies will deploy their investor rights to challenge public health measures – such as, for instance, initiatives to curb drug pricing and profiteering. Such concerns are not merely theoretical. Eli Lilly has brought an investor action against the Canadian Government over the rejection of its drug patents under the investor-state dispute settlement regime of the North American Free Trade Agreement (NAFTA). The Health Annex to the TPP also raises worries that pharmaceutical drug companies will able to object to regulatory procedures in respect of healthcare. It is disappointing that the TPP – in the leaks that we have seen – has only limited recognition of the importance of access to essential medicines. There is a need to ensure that there are proper safeguards to provide access to essential medicines – particularly in respect of HIV/AIDs, malaria, and tuberculosis. Moreover, there must be protection against drug profiteering and price gouging in any trade agreement. There should be strong measures against the abuse of intellectual property rights. The dispute over Turing Pharmaceuticals AG and Daraprim is an important cautionary warning in respect of some of the dangers present in the secret negotiations in respect of the TPP. There is a need to preserve consumer rights, competition policy, and public health in trade negotiations over an agreement covering the Pacific Rim.
Resumo:
Chromomycin A3, mithramycin, olivomycin and actinomycin D, four antitumor antibiotics inhibit growth of Yoshida ascites sarcoma (YAS). The antibiotic treated tumor-free rats exhibit antitumor immunity as judged by rejection of subsequent tumor transplant. The lymphocytes from immune rats are able to inhibit tumor growth in syngenic animals.
Resumo:
The ethylene biosynthesis inhibitor, 1-methylcyclopropene (1-MCP), has been commercially used to extend the storage life of European pear fruit and to allow shipment to distant markets. However, the influence of 1-MCP on the ability of fruit to ripen to an acceptable sensory quality has not been investigated in 'Bartlett' pear, one of the most aromatic of pear fruit. In the current study, early-, mid- and late-season 'Bartlett' pear fruit were treated with 0.6μLL-1 1-MCP at 0°C for 24h, 100μLL-1 ethylene at 20°C for 24h, or untreated before immediate transfer to 20°C for ripening until eating soft (13N firmness). Fruit from each treatment were subjected to objective and sensory quality evaluation once ripe. Sensory quality showed differences related to harvest maturity; the importance of harvest maturity depended on the treatment. Treatment with 1-MCP effectively slowed fruit ripening and therefore extended postharvest life, but also resulted in fully ripened pears with more desirable sensory traits, as compared with ethylene-treated and untreated pears. The enhanced sensory quality was related to higher sweetness, juiciness and pear aroma and reduced fermented aroma, gritty texture and tart taste. In addition, the sensory profiles of 1-MCP-treated pears were more stable among fruit from the three harvest dates than the ethylene-treated pears, which exhibited very different sensory profiles between early- and late-season fruits. © 2015 Elsevier B.V.
Resumo:
Continuous slurry reactor runs of two to four weeks duration were carried out for catalyzed air oxidation of thiosalts under a variety of conditions using poly (4-vinylpyridine) - Cu (II) and quaternized poly (4-vinylpyridine) - Cu (II) catalysts. Results obtained indicate that these catalysts have high activity and relatively long-term catalyst stability for thiosalt waste streams of < 1000 ppm thiosalt level. Using 2% (w/w) slurries of the poly (4-vinylpyridine) Cu (II) catalyst, effective oxidation of 700 ppm S2O32− influent to an effluent of < 100 ppm total thio-salts can be carried out continuously for at least one month when operating at 20 to 30°C with solution flow rates of$˜1l/h and aeration of 1300 XXX/h using a two-stage reactor system comprised of 12 l reactors. At higher thiosalt influent levels (i.e. > 1600 ppm) increased reaction temperatures enable depletion to < 100 ppm thiosalt effluent levels for up to one week of continuous operation. The catalysts deactivate much more readily at these higher influent levels as a result of greater copper losses and appreciable adsorption of S2O32− and S4O62−. The behaviour of continuous slurry reactors employed in the experimental studies, by use of batch reaction data for the poly (4-vinylpyridine) Cu (II) catalyzed oxidation of thiosalts, can be modelled successfully. Quaternized poly (4-vinylpyridine) Cu (II) catalyst has good long-term stability and copper losses are very low. The poly (4-vinylpyridine) Cu (II) catalyst, however, is susceptible to appreciable oxidation of the polymer matrix on long-term usage. This oxidation of the polymer matrix results in a substantial loss in the activity of the regenerated catalyst.
Resumo:
DNA polymerase has been purified approximately 2000-fold from Mycobacterium tuberculosis H37Rv. The purified preparation was homogeneous by electrophoretic criteria and has a molecular weight of 135 000. The purified enzyme resembles Escherichia coli polymerase I in its properties, being insensitive to sulfhydryl drugs and possessing 5′,3′-exonuclease activity in addition to polymerase and 3′,5′-exonuclease activities. However, it differs from the latter in its sensitivity to higher salt concentration and DNA intercalating agents such as 8-aminoquinoline. The polymerase exhibited maximal activity between 37–42°C and pH 8.8–9.5. The polymerase was stable for several months below 0°C. However, the 5′,3′-exonuclease activity was more labile. The effects of different metal ions, polyamines and drugs on the polymerase activity are presented.
Resumo:
White nectarines (Prunus persica var. nucipersica) were fumigated with methyl bromide (MB) at a nominal treatment dose of 18 g m-3 at 18°C for 5 h and 30 min as a quarantine disinfestation treatment against Bactrocera tryoni, the Queensland fruit fly. Three large scale trials were conducted against each of the four immature lifestages, eggs and first, second and third instars. There were no survivors from the estimated 43,614 eggs, 41,873 first instars, 41,345 second instars and 33,549 third instars treated, thereby resulting in an efficacy of GROTERDAN99.99% mortality at the 95% confidence level for each lifestage. Of the 12 trials reported herein, the highest concentration of MB, sampled from the chamber headspace analysed by gas chromatography, was 18.7 g m-3. The maximum chamber temperature from 5 min readings was 19.7°C and the maximum fruit core temperature was 19.5°C. The treatment time for all trials was exactly 5.5 h. Thus the recommended treatment dose to disinfest nectarines from B. tryoni is 19.0 g m-3 MB at 20.0°C for 5.5 h. Fruit quality trials were conducted on white nectarines at three combinations of treatment parameters: 15 g m-3 MB at 19°C for 5.25 h; 18 g m-3 MB at 19°C for 5.5 h and 21 g m-3 MB at 19°C for 5.5 h. The fruit were stored at 0, 4 and 8 days at 4°C and 8 days at 4°C followed by 4 d at 22°C. They were then were assessed for skin colour, flesh colour, skin defects, flesh defects, fruit weight loss, flesh firmness, total soluble solids, titratable acidity and rots. There was no significant difference between untreated control and MB treated fruits in any of the parameters measured. Thus the treatments did not have adverse effects on fruit quality.