944 resultados para transient thermal distortion analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-thermal plasma (NTP) is a promising candidate for controlling engine exhaust emissions. Plasma is known as the fourth state of matter, where both electrons and positive ions co-exist. Both gaseous and particle emissions of diesel exhaust undergo chemical changes when they are exposed to plasma. In this project diesel particulate matter (DPM) mitigation from the actual diesel exhaust by using NTP technology has been studied. The effect of plasma, not only on PM mass but also on PM size distribution, physico-chemical structure of PM and PM removal mechanisms, has been investigated. It was found that NTP technology can significantly reduce both PM mass and number. However, under some circumstances particles can be formed by nucleation. Energy required to create the plasma with the current technology is higher than the benchmark set by the commonly used by the automotive industry. Further research will enable the mechanism of particle creation and energy consumption to be optimised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the methodology and results of a weak-coupled aerothermalstructural analysis on the ascent phase of the SCRAMSPACE Mach 8 scramjet flight experiment. This vehicle was essentially un-shrouded during the flight trajectory, relying on the thin, 5mm thick aluminium external shell of the payload to maintain structural integrity and protect the flight experiment. As such, understanding the thermal-structural response of the vehicle was imperative to mission success. Using two- and three-dimensional models, an iterative procedure was employed to compute the flowfield, convective heating, wall temperatures and structural coupling at flight times covering both peak heating and peak surface temperature. Accounting for such coupling resulted in a 150K reduction in wall temperature compared to the more conservative cold wall assumption. Despite this, peak temperatures remained of the order of 550 K. Further, thermally induced stresses within these regions were in excess of four times the material failure limits. Irreversible material failure during ascent was therefore concluded likely to occur on the external shell. Two alternate materials, steel 1006 and copper, were therefore assessed with the results indicating that steel sections on the external shell resulted in the best thermal-structural response of the payload.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Typical wireless power transfer systems utilize series compensation circuit which is based on magnetic coupling and resonance principles that was first developed by Tesla. However, changes in coupling caused by gap distance, alignment and orientation variations can lead to reduce power transfer efficiencies and the transferred power levels. This paper proposes impedance matched circuit to reduce frequency bifurcation effect and improve on the transferred power level, efficiency and total harmonic distortion (THD) performance of the series compensation circuit. A comprehensive mathematical analysis is performed for both series and impedance matched circuits to show the frequency bifurcation effects in terms of input impedance, variations in transferred power levels and efficiencies. Matlab/Simulink results validate the theoretical analysis and shows the circuits’ THD performance when circuits are fed with power electronic converters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The products evolved during the thermal decomposition of the coal-derived pyrite/marcasite were studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR–MS) technique. The main gases and volatile products released during the thermal decomposition of the coal-derived pyrite/marcasite are water (H2O), carbon dioxide (CO2), and sulfur dioxide (SO2). The results showed that the evolved products obtained were mainly divided into two processes: (1) the main evolved product H2O is mainly released at below 300 °C; (2) under the temperature of 450–650 °C, the main evolved products are SO2 and small amount of CO2. It is worth mentioning that SO3 was not observed as a product as no peak was observed in the m/z = 80 curve. The chemical substance SO2 is present as the main gaseous product in the thermal decomposition for the sample. The coal-derived pyrite/marcasite is different from mineral pyrite in thermal decomposition temperature. The mass spectrometric analysis results are in good agreement with the infrared spectroscopic analysis of the evolved gases. These results give the evidence on the thermal decomposition products and make all explanations have the sufficient evidence. Therefore, TG–MS–IR is a powerful tool for the investigation of gas evolution from the thermal decomposition of materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thermal behavior of kaolinite–urea intercalation complex was investigated by thermogravimetry–differential scanning calorimetry (TG–DSC), X-ray diffraction (XRD), and fourier transform infrared spectroscopy (FTIR). In addition, the interaction mode of urea molecules intercalated into the kaolinite gallery was studied by means of molecular dynamics simulation. Three main mass losses were observed at 136 °C, in the range of 210–270 °C, and at 500 °C in the TG–DSC curves, which were, respectively, attributed to (1) melting of the surface-adsorbed urea, (2) removal of the intercalated urea, and (3) dehydroxylation of the deintercalated kaolinite. The three DSC endothermic peaks at 218, 250, and 261 °C were related to the successive removals of intercalated urea with three different distribution structures. Based on the angle between the dipole moment vector of urea and the basal surface of kaolinite, the three urea models could be described as follows: (1) Type A, the dipole moment vector is nearly parallel to the basal surface of kaolinite; (2) Type B, the dipole moment vector points to the silica tetrahedron with the angle between it and the basal surface of kaolinite ranging from 20°to 40°; and (3) Type C, the dipole moment vector is nearly perpendicular to the basal surface of kaolinite. The three distribution structures of urea molecules were validated by the results of the molecular dynamics simulation. Furthermore, the thermal behavior of the kaolinite–urea intercalation complex investigated by TG–DSC was also supported by FTIR and XRD analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of rubber composites were prepared by blending styrene-butadiene rubber (SBR) latex and the different particle sized kaolinites. The thermal stabilities of the rubber composites were characterized using thermogravimetry, digital photography, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. Kaolinite SBR composites showed much greater thermal stability when compared with that of the pure SBR. With the increase of kaolinite particle size, the pyrolysis products became much looser; the char layer and crystalline carbon content gradually decreased in the pyrolysis residues. The pyrolysis residues of the SBR composites filled with the different particle sized kaolinites showed some remarkable changes in structural characteristics. The increase of kaolinite particle size was not beneficial to form the compact and stable crystalline carbon in the pyrolysis process, and resulted in a negative influence in improving the thermal stability of kaolinite/SBR composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surfaces of natural beidellite clay were modified with cationic surfactant, tetradecyltrimethylammonium bromide, at different concentrations. The organo-beidellites were analysed using thermogravimetric analysis which shows four thermal oxidation/decomposition steps. The first step of mass loss is observed from room temperature to 130 °C due to the dehydration of adsorbed water. The second step of mass loss between 130 and 400 °C is attributed to the oxidation step of the intercalated organic surfactant with the formation of charcoal. The third mass loss happens between 400 and 500 °C which is assigned to the loss of hydroxyl groups on the edge of clays and the further oxidation step of charcoal. The fourth step is ascribed to the loss of structural OH units as well as the final oxidation/decomposition step of charcoal which takes place between 500 and 700 °C. Thermogravimetric analysis has proven to be a useful tool for estimating loaded surfactant amount.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study is seeking to investigate the effect of non-thermal plasma technology in the abatement of particulate matter (PM) from the actual diesel exhaust. Ozone (O3) strongly promotes PM oxidation, the main product of which is carbon dioxide (CO2). PM oxidation into the less harmful product (CO2) is the main objective whiles the correlation between PM, O3 and CO2 is considered. A dielectric barrier discharge reactor has been designed with pulsed power technology to produce plasma inside the diesel exhaust. To characterise the system under varied conditions, a range of applied voltages from 11 kVPP to 21kVPP at repetition rates of 2.5, 5, 7.5 and 10 kHz, have been experimentally investigated. The results show that by increasing the applied voltage and repetition rate, higher discharge power and CO2 dissociation can be achieved. The PM removal efficiency of more than 50% has been achieved during the experiments and high concentrations of ozone on the order of a few hundreds of ppm have been observed at high discharge powers. Furthermore, O3, CO2 and PM concentrations at different plasma states have been analysed for time dependence. Based on this analysis, an inverse relationship between ozone concentration and PM removal has been found and the role of ozone in PM removal in plasma treatment of diesel exhaust has been highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Workshops and seminars are widely-used forms of doctoral training. However, research with a particular focus on these forms of doctoral training is sporadic in the literature. There is no, if any, such research concerning the international context and participants’ own voices. Mindful of these lacunae in the literature, we write the current paper as a group of participants in one of a series of doctoral forums co-organised annually by Beijing Normal University, China and Queensland University of Technology, Australia. The paper voices our own experiences of participation in the doctoral forum. Data were drawn from reflections, journals, and group discussions of all 12 student and academic participants. These qualitative data were organised and analysed through Bourdieu’s notions of capital and field. Findings indicate that the doctoral forum created enabling and challenging social fields where participants accrued and exchanged various forms of capital and negotiated transient and complex power relations. In this respect, the sociological framework used provides a distinctive theoretical tool to conceptualise and analyse the benefits and tensions of participation in the doctoral forum. Knowledge built and lessons learned through our paper will provide implications and recommendations for future planning of, and participation in, the doctoral forum series and similar activities elsewhere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fire resistance of load bearing Light Gauge Steel Frame (LSF) wall systems is important to protect lives and properties in fire accidents. Recent fire tests of LSF walls made of the new cold-formed and welded hollow flange channel (HFC) section studs and the commonly used lipped channel section (LCS) studs have shown the influence of stud sections on the fire resistance rating (FRR) of LSF walls. To advance the use of HFC section studs and to verify the outcomes from the fire tests, finite element models were developed to predict the structural fire performance of LSF walls made of welded HFC section studs. The developed models incorporated the measured non-uniform temperature distributions in LSF wall studs due to the exposure of standard fire on one side, and accurate elevated temperature mechanical properties of steel used in the stud sections. These models simulated the various complexities involved such as thermal bowing and neutral axis shift caused by the non-uniform temperature distribution in the studs. The finite element analysis (FEA) results agreed well with the full scale fire test results including the FRR, outer hot and cold flange temperatures at failure and axial deformation and lateral displacement profiles. They also confirmed the superior fire performance of LSF walls made of HFC section studs. The applicability of both transient and steady state FEA of LSF walls under fire conditions was verified in this study, which also investigated the effects of using various temperature distribution patterns across the cross-section of HFC section studs on the FRR of LSF walls. This paper presents the details of this numerical study and the results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma sprayable powders were prepared from ZrO2-CaO-CeO2 system using an organic binder and coated onto stainless steel substrates previously coated by a bond coat (Ni 22Cr 20Al 1.0Y) using plasma spraying. The coatings exhibited good thermal barrier characteristics and excellent resistance to thermal shock at 1000 degrees C under simulated laboratory conditions (90 half hour cycles without failure) and at 1200 degrees C under accelerated burner rig test conditions (500 2 min cycles without failure). No destabilization of cubic/tetragonal ZrO2 phase fraction occured either during the long hours (45 h cumulative) or the large number of thermal shock tests. Growth of a distinct SiO2 rich region within the ceramic was observed in the specimens thermal shock cycled at 1000 degrees C apart from mild oxidation of the bond coat. The specimens tested at 1200 degrees C had a glassy appearance on the top surface and exhibited severe oxidation of the bond coat at the ceramic-bond coat interface. The glassy appearance of the surface is due to the formation of a liquid silicate layer attributable to the impurity phase present in commercial grade ZrO2 powder. These observations are supported by SEM analysis and quantitative EDAX data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Commercially available mullite (3Al(2)O(3). 2SiO(2)) powders containing oxides of calcium and iron as impurities, have been made suitable for plasma spraying by using an organic binder. Stainless steel substrates covered with Ni-22Cr-10Al-1.0Y bond coat were spray coated with mullite, The 425 mu m thick coatings were subjected to thermal shock cycling under burner rig conditions between 1000 and 1200 degrees C and less than 200 degrees C with holding times of 1, 5, and 30 min. While the coatings withstood as high as 1000 shock cycles without failure between 1000 and 200 degrees C, spallation occurred early at 120 cycles when shocked from 1200 degrees C, The coatings appeared to go through a process of self erosion at high temperatures resulting in loss of material. Also observed were changes attributable to melting of the silicate grains, which smooth down the surface. Oxidation of the bond coat did not appear to influence the failure, These observations were supported by detailed scanning electron microscopy and quantitative chemical composition analysis, differential thermal analysis, and surface roughness measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general mathematical model for forced air precooling of spherical food products in bulk is developed. The food products are arranged inline to form a rectangular parallelepiped. Chilled air is blown along the height of the package. The governing equations for the transient two-dimensional conduction with internal heat generation in the product, simultaneous heat and mass transfer at the product-air interface and one-dimensional transient energy and species conservation equations for the moist air are solved numerically using finite difference methods. Results are presented in the form of time-temperature histories. Experiments are conducted with model foods in a laboratory scale air precooling tunnel. The agreement between the theoretical and experimental results is found to be good. In general, a single product analysis fails to predict the precooling characteristics of bulk loads of food products. In the range of values investigated, the respiration heat is found to have a negligible effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zinc microtower and platestacks were synthesized by thermal evaporation of zinc. This synthesis was carried out under high vacuum conditions in the absence of catalyst and carrier gas. The morphology, composition and microstructural properties of the Zn nanostructures were studied by XRD, SEM and TEM. The synthesized microtowers and platestacks were single crystalline in nature. These microtowers and platestacks showed a layered structures consisting of several hexagonal nanoplates. Based on the morphological and composition analysis, we have proposed a vapor-solid mechanism to explain the growth of these nanostructures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An interesting, periodic appearance of a new peak has been observed in the reflected spectrum of a Fiber Bragg Grating (FBG) inscribed in a germanosilicate fiber during thermal treatment. The new peak occurs on the longer wavelength side of the spectrum during heating and on the shorter wavelength side during cooling, following an identical reverse dynamics. Comparison with a commercial grating with 99.9% reflectivity shows a similar decay dynamics. It is proposed that the distortion due to simultaneous erasure and thermal expansion of the index modulation profile may be responsible for the observed anomaly. The reported results help us in understanding the thermal behavior of FBGs and provide additional insights into the mechanisms responsible for the photosensitivity in germanosilicate fibers.