916 resultados para structural Features


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chemical structure of refractory marine dissolved organic matter (DOM) is still largely unknown. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS) was used to resolve the complex mixtures of DOM and provide valuable information on elemental compositions on a molecular scale. We characterized and compared DOM from two sharply contrasting aquatic environments, algal-derived DOM from the Weddell Sea (Antarctica) and terrigenous DOM from pore water of a tropical mangrove area in northern Brazil. Several thousand molecular formulas in the mass range of 300-600 Da were identified and reproduced in element ratio plots. On the basis of molecular elemental composition and double-bond equivalents (DBE) we calculated an average composition for marine DOM. O/C ratios in the marine samples were lower (0.36 ± 0.01) than in the mangrove pore-water sample (0.42). A small proportion of chemical formulas with higher molecular mass in the marine samples were characterized by very low O/C and H/C ratios probably reflecting amphiphilic properties. The average number of unsaturations in the marine samples was surprisingly high (DBE = 9.9; mangrove pore water: DBE = 9.4) most likely due to a significant contribution of carbonyl carbon. There was no significant difference in elemental composition between surface and deep-water DOM in the Weddell Sea. Although there were some molecules with unique marine elemental composition, there was a conspicuous degree of similarity between the terrigenous and algal-derived end members. Approximately one third of the molecular formulas were present in all marine as well as in the mangrove samples. We infer that different forms of microbial degradation ultimately lead to similar structural features that are intrinsically refractory, independent of the source of the organic matter and the environmental conditions where degradation took place.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A near-bottom geological and geophysical survey was conducted at the western intersection of the Siqueiros Transform Fault and the East Pacific Rise. Transform-fault shear appears to distort the east flank of the rise crest in an area north of the fracture zone. In ward-facing scarps trend 335° and do not parallel the regional axis of spreading. Small-scale scarps reveal a hummocky bathymetry. The center of spreading is not a central peak but rather a 20-40 m deep, 1 km wide valley superimposed upon an 8 km wide ridge-crest horst. Small-scale topography indicates widespread volcanic flows within the valley. Two 0.75 km wide blocks flank the central valley. Fault scarps are more dominant on the western flank. Their alignment shifts from directions intermediate to parallel to the regional axis of spreading (355°). A median ridge within the fracture zone has a fault-block topography similar to that of the East Pacific Rise to the north. Dominant eastward-facing scarps trending 335° are on the west flank. A central depression, 1 km wide and 30 m deep, separates the dominantly fault-block regime of the west from the smoother topography of the east flank. This ridge originated by uplift due to faulting as well as by volcanism. Detailed mapping was concentrated in a perched basin (Dante's Hole) at the intersection of the rise crest and the fracture zone. Structural features suggest that Dante's Hole is an area subject to extreme shear and tensional drag resulting from transition between non-rigid and rigid crustal behavior. Normal E-W crustal spreading is probably taking place well within the northern confines of the basin. Possible residual spreading of this isolated rise crest coupled with shear drag within the transform fault could explain the structural isolation of Dante's Hole from the remainder of the Siqueiros Transform Fault.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Detailed mineralogical characterization of micronodules is given. The main regularities of variations in composition of micronodules from Central Pacific sedimentary rocks of different ages are revealed. New data on structure and structural features of manganese minerals are reported.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human activities represent a significant burden on the global water cycle, with large and increasing demands placed on limited water resources by manufacturing, energy production and domestic water use. In addition to changing the quantity of available water resources, human activities lead to changes in water quality by introducing a large and often poorly-characterized array of chemical pollutants, which may negatively impact biodiversity in aquatic ecosystems, leading to impairment of valuable ecosystem functions and services. Domestic and industrial wastewaters represent a significant source of pollution to the aquatic environment due to inadequate or incomplete removal of chemicals introduced into waters by human activities. Currently, incomplete chemical characterization of treated wastewaters limits comprehensive risk assessment of this ubiquitous impact to water. In particular, a significant fraction of the organic chemical composition of treated industrial and domestic wastewaters remains uncharacterized at the molecular level. Efforts aimed at reducing the impacts of water pollution on aquatic ecosystems critically require knowledge of the composition of wastewaters to develop interventions capable of protecting our precious natural water resources.

The goal of this dissertation was to develop a robust, extensible and high-throughput framework for the comprehensive characterization of organic micropollutants in wastewaters by high-resolution accurate-mass mass spectrometry. High-resolution mass spectrometry provides the most powerful analytical technique available for assessing the occurrence and fate of organic pollutants in the water cycle. However, significant limitations in data processing, analysis and interpretation have limited this technique in achieving comprehensive characterization of organic pollutants occurring in natural and built environments. My work aimed to address these challenges by development of automated workflows for the structural characterization of organic pollutants in wastewater and wastewater impacted environments by high-resolution mass spectrometry, and to apply these methods in combination with novel data handling routines to conduct detailed fate studies of wastewater-derived organic micropollutants in the aquatic environment.

In Chapter 2, chemoinformatic tools were implemented along with novel non-targeted mass spectrometric analytical methods to characterize, map, and explore an environmentally-relevant “chemical space” in municipal wastewater. This was accomplished by characterizing the molecular composition of known wastewater-derived organic pollutants and substances that are prioritized as potential wastewater contaminants, using these databases to evaluate the pollutant-likeness of structures postulated for unknown organic compounds that I detected in wastewater extracts using high-resolution mass spectrometry approaches. Results showed that application of multiple computational mass spectrometric tools to structural elucidation of unknown organic pollutants arising in wastewaters improved the efficiency and veracity of screening approaches based on high-resolution mass spectrometry. Furthermore, structural similarity searching was essential for prioritizing substances sharing structural features with known organic pollutants or industrial and consumer chemicals that could enter the environment through use or disposal.

I then applied this comprehensive methodological and computational non-targeted analysis workflow to micropollutant fate analysis in domestic wastewaters (Chapter 3), surface waters impacted by water reuse activities (Chapter 4) and effluents of wastewater treatment facilities receiving wastewater from oil and gas extraction activities (Chapter 5). In Chapter 3, I showed that application of chemometric tools aided in the prioritization of non-targeted compounds arising at various stages of conventional wastewater treatment by partitioning high dimensional data into rational chemical categories based on knowledge of organic chemical fate processes, resulting in the classification of organic micropollutants based on their occurrence and/or removal during treatment. Similarly, in Chapter 4, high-resolution sampling and broad-spectrum targeted and non-targeted chemical analysis were applied to assess the occurrence and fate of organic micropollutants in a water reuse application, wherein reclaimed wastewater was applied for irrigation of turf grass. Results showed that organic micropollutant composition of surface waters receiving runoff from wastewater irrigated areas appeared to be minimally impacted by wastewater-derived organic micropollutants. Finally, Chapter 5 presents results of the comprehensive organic chemical composition of oil and gas wastewaters treated for surface water discharge. Concurrent analysis of effluent samples by complementary, broad-spectrum analytical techniques, revealed that low-levels of hydrophobic organic contaminants, but elevated concentrations of polymeric surfactants, which may effect the fate and analysis of contaminants of concern in oil and gas wastewaters.

Taken together, my work represents significant progress in the characterization of polar organic chemical pollutants associated with wastewater-impacted environments by high-resolution mass spectrometry. Application of these comprehensive methods to examine micropollutant fate processes in wastewater treatment systems, water reuse environments, and water applications in oil/gas exploration yielded new insights into the factors that influence transport, transformation, and persistence of organic micropollutants in these systems across an unprecedented breadth of chemical space.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Social structure is a key determinant of population biology and is central to the way animals exploit their environment. The risk of predation is often invoked as an important factor influencing the evolution of social structure in cetaceans and other mammals, but little direct information is available about how cetaceans actually respond to predators or other perceived threats. The playback of sounds to an animal is a powerful tool for assessing behavioral responses to predators, but quantifying behavioral responses to playback experiments requires baseline knowledge of normal behavioral patterns and variation. The central goal of my dissertation is to describe baseline foraging behavior for the western Atlantic short-finnned pilot whales (Globicephala macrohynchus) and examine the role of social organization in their response to predators. To accomplish this I used multi-sensor digital acoustic tags (DTAGs), satellite-linked time-depth recorders (SLTDR), and playback experiments to study foraging behavior and behavioral response to predators in pilot whales. Fine scale foraging strategies and population level patterns were identified by estimating the body size and examining the location and movement around feeding events using data collected with DTAGs deployed on 40 pilot whales in summers of 2008-2014 off the coast of Cape Hatteras, North Carolina. Pilot whales were found to forage throughout the water column and performed feeding buzzes at depths ranging from 29-1176 meters. The results indicated potential habitat segregation in foraging depth in short-finned pilot whales with larger individuals foraging on average at deeper depths. Calculated aerobic dive limit for large adult males was approximately 6 minutes longer than that of females and likely facilitated the difference in foraging depth. Furthermore, the buzz frequency and speed around feeding attempts indicate this population pilot whales are likely targeting multiple small prey items. Using these results, I built decision trees to inform foraging dive classification in coarse, long-term dive data collected with SLTDRs deployed on 6 pilot whales in the summers of 2014 and 2015 in the same area off the coast of North Carolina. I used these long term foraging records to compare diurnal foraging rates and depths, as well as classify bouts with a maximum likelihood method, and evaluate behavioral aerobic dive limits (ADLB) through examination of dive durations and inter-dive intervals. Dive duration was the best predictor of foraging, with dives >400.6 seconds classified as foraging, and a 96% classification accuracy. There were no diurnal patterns in foraging depth or rates and average duration of bouts was 2.94 hours with maximum bout durations lasting up to 14 hours. The results indicated that pilot whales forage in relatively long bouts and the ADLB indicate that pilot whales rarely, if ever exceed their aerobic limits. To evaluate the response to predators I used controlled playback experiments to examine the behavioral responses of 10 of the tagged short-finned pilot whales off Cape Hatteras, North Carolina and 4 Risso’s dolphins (Grampus griseus) off Southern California to the calls of mammal-eating killer whales (MEK). Both species responded to a subset of MEK calls with increased movement, swim speed and increased cohesion of the focal groups, but the two species exhibited different directional movement and vocal responses. Pilot whales increased their call rate and approached the sound source, but Risso’s dolphins exhibited no change in their vocal behavior and moved in a rapid, directed manner away from the source. Thus, at least to a sub-set of mammal-eating killer whale calls, these two study species reacted in a manner that is consistent with their patterns of social organization. Pilot whales, which live in relatively permanent groups bound by strong social bonds, responded in a manner that built on their high levels of social cohesion. In contrast, Risso’s dolphins exhibited an exaggerated flight response and moved rapidly away from the sound source. The fact that both species responded strongly to a select number of MEK calls, suggests that structural features of signals play critical contextual roles in the probability of response to potential threats in odontocete cetaceans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alors que les activités anthropiques font basculer de nombreux écosystèmes vers des régimes fonctionnels différents, la résilience des systèmes socio-écologiques devient un problème pressant. Des acteurs locaux, impliqués dans une grande diversité de groupes — allant d’initiatives locales et indépendantes à de grandes institutions formelles — peuvent agir sur ces questions en collaborant au développement, à la promotion ou à l’implantation de pratiques plus en accord avec ce que l’environnement peut fournir. De ces collaborations répétées émergent des réseaux complexes, et il a été montré que la topologie de ces réseaux peut améliorer la résilience des systèmes socio-écologiques (SSÉ) auxquels ils participent. La topologie des réseaux d’acteurs favorisant la résilience de leur SSÉ est caractérisée par une combinaison de plusieurs facteurs : la structure doit être modulaire afin d’aider les différents groupes à développer et proposer des solutions à la fois plus innovantes (en réduisant l’homogénéisation du réseau), et plus proches de leurs intérêts propres ; elle doit être bien connectée et facilement synchronisable afin de faciliter les consensus, d’augmenter le capital social, ainsi que la capacité d’apprentissage ; enfin, elle doit être robuste, afin d’éviter que les deux premières caractéristiques ne souffrent du retrait volontaire ou de la mise à l’écart de certains acteurs. Ces caractéristiques, qui sont relativement intuitives à la fois conceptuellement et dans leur application mathématique, sont souvent employées séparément pour analyser les qualités structurales de réseaux d’acteurs empiriques. Cependant, certaines sont, par nature, incompatibles entre elles. Par exemple, le degré de modularité d’un réseau ne peut pas augmenter au même rythme que sa connectivité, et cette dernière ne peut pas être améliorée tout en améliorant sa robustesse. Cet obstacle rend difficile la création d’une mesure globale, car le niveau auquel le réseau des acteurs contribue à améliorer la résilience du SSÉ ne peut pas être la simple addition des caractéristiques citées, mais plutôt le résultat d’un compromis subtil entre celles-ci. Le travail présenté ici a pour objectifs (1), d’explorer les compromis entre ces caractéristiques ; (2) de proposer une mesure du degré auquel un réseau empirique d’acteurs contribue à la résilience de son SSÉ ; et (3) d’analyser un réseau empirique à la lumière, entre autres, de ces qualités structurales. Cette thèse s’articule autour d’une introduction et de quatre chapitres numérotés de 2 à 5. Le chapitre 2 est une revue de la littérature sur la résilience des SSÉ. Il identifie une série de caractéristiques structurales (ainsi que les mesures de réseaux qui leur correspondent) liées à l’amélioration de la résilience dans les SSÉ. Le chapitre 3 est une étude de cas sur la péninsule d’Eyre, une région rurale d’Australie-Méridionale où l’occupation du sol, ainsi que les changements climatiques, contribuent à l’érosion de la biodiversité. Pour cette étude de cas, des travaux de terrain ont été effectués en 2010 et 2011 durant lesquels une série d’entrevues a permis de créer une liste des acteurs de la cogestion de la biodiversité sur la péninsule. Les données collectées ont été utilisées pour le développement d’un questionnaire en ligne permettant de documenter les interactions entre ces acteurs. Ces deux étapes ont permis la reconstitution d’un réseau pondéré et dirigé de 129 acteurs individuels et 1180 relations. Le chapitre 4 décrit une méthodologie pour mesurer le degré auquel un réseau d’acteurs participe à la résilience du SSÉ dans lequel il est inclus. La méthode s’articule en deux étapes : premièrement, un algorithme d’optimisation (recuit simulé) est utilisé pour fabriquer un archétype semi-aléatoire correspondant à un compromis entre des niveaux élevés de modularité, de connectivité et de robustesse. Deuxièmement, un réseau empirique (comme celui de la péninsule d’Eyre) est comparé au réseau archétypique par le biais d’une mesure de distance structurelle. Plus la distance est courte, et plus le réseau empirique est proche de sa configuration optimale. La cinquième et dernier chapitre est une amélioration de l’algorithme de recuit simulé utilisé dans le chapitre 4. Comme il est d’usage pour ce genre d’algorithmes, le recuit simulé utilisé projetait les dimensions du problème multiobjectif dans une seule dimension (sous la forme d’une moyenne pondérée). Si cette technique donne de très bons résultats ponctuellement, elle n’autorise la production que d’une seule solution parmi la multitude de compromis possibles entre les différents objectifs. Afin de mieux explorer ces compromis, nous proposons un algorithme de recuit simulé multiobjectifs qui, plutôt que d’optimiser une seule solution, optimise une surface multidimensionnelle de solutions. Cette étude, qui se concentre sur la partie sociale des systèmes socio-écologiques, améliore notre compréhension des structures actorielles qui contribuent à la résilience des SSÉ. Elle montre que si certaines caractéristiques profitables à la résilience sont incompatibles (modularité et connectivité, ou — dans une moindre mesure — connectivité et robustesse), d’autres sont plus facilement conciliables (connectivité et synchronisabilité, ou — dans une moindre mesure — modularité et robustesse). Elle fournit également une méthode intuitive pour mesurer quantitativement des réseaux d’acteurs empiriques, et ouvre ainsi la voie vers, par exemple, des comparaisons d’études de cas, ou des suivis — dans le temps — de réseaux d’acteurs. De plus, cette thèse inclut une étude de cas qui fait la lumière sur l’importance de certains groupes institutionnels pour la coordination des collaborations et des échanges de connaissances entre des acteurs aux intérêts potentiellement divergents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La distinción entre argumentación y explicación es una tarea complicada pero necesaria por diversas razones. Una de ellas es la necesidad de incorporar la explicación en un movimiento del diálogo como resultado de una obligación dialéctica. Se propusieron distintos sistemas de diálogo que exploran la distinción enfatizando aspectos pragmáticos. En el presente trabajo me ocupo de aspectos estructurales de la explicación analizados en el marco de la lógica por defecto que permite caracterizar ciertas objeciones en el diálogo. Asimismo, considero que la versión operacional de la lógica por defecto constituye una aproximaciónadecuada en la construcción de la explicación y en la representación de la instancia de diálogo en el intercambio dialéctico

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main features of geological structures of ocean rift zones based on results of studies of the P.P. Shirshov Institute of Oceanology with use of manned submersibles "Pisces" are under consideration in the book. Multiyear experience of geological exploration in rift zones with the use of these submersibles is summarized. Methodology of underwater operations is described. The main structural features of the Red Sea and Gulf of Aden rifts as well as the rift zone of the Reykjanes Ridge are considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

On August 6, 2010, a large (~50 Mm**3) debris avalanche occurred on the flank of Mount Meager in the southern Coast Mountains of British Columbia, Canada. We studied the deposits to infer the morphodynamics of the landslide from initiation to emplacement. Structure from motion (SfM) photogrammetry, based on oblique photos taken with a standard SLR camera during a low helicopter traverse, was used to create high-resolution orthophotos and base maps. Interpretation of the images and maps allowed us to recognize two main rheological phases in the debris avalanche. Just below the source area, in the valley of Capricorn Creek, the landslide separated into two phases, one water-rich and more mobile, and the other water-poor and less mobile. The water-rich phase spread quickly, achieved high superelevation on the valley sides, and left distal scattered deposits. The main water-poor phase moved more slowly, did not superelevate, and formed a thick continuous deposit (up to ~30 m) on the valley floor. The water-poor flow deposit has structural features such as hummocks, brittle-ductile faults, and shear zones. Our study, based on a freshly emplaced deposit, advances understanding of large mass movements by showing that a single landslide can develop multiple rheology phases with different behaviours. Rheological evolution and separation of phases should always be taken into account to provide better risk assessment scenarios.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Five G protein-coupled receptors (GPCRs) have been identified to be activated by free fatty acids (FFA). Among them, FFA1 (GPR40) and FFA4 (GPR120) bind long-chain fatty acids, FFA2 (GPR43) and FFA3 (GPR41) bind short-chain fatty acids and GPR84 binds medium-chain fatty acids. Free fatty acid receptors have now emerged as potential targets for the treatment of diabetes, obesity and immune diseases. The recent progress in crystallography of GPCRs has now enabled the elucidation of the structure of FFA1 and provided reliable templates for homology modelling of other FFA receptors. Analysis of the crystal structure and improved homology models, along with mutagenesis data and structure activity, highlighted an unusual arginine charge pairing interaction in FFA1-3 for receptor modulation, distinct structural features for ligand binding to FFA1 and FFA4 and an arginine of the second extracellular loop as a possible anchoring point for FFA at GPR84. Structural data will be helpful for searching novel small molecule modulators at the FFA receptors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis concerns work on structure and membrane interactions of enzymes involved in lipid synthesis, biomembrane and cell wall regulation and cell defense processes. These proteins, known as glycosyltransferases (GTs), are involved in the transfer of sugar moieties from nucleotide sugars to lipids or chitin polymers. Glycosyltransferases from three types of organisms have been investigated; one is responsible for vital lipid synthesis in Arabidopsis thaliana (atDGD2) and adjusts the lipid content in biomembranes if the plant experiences stressful growth conditions. This enzyme shares many structural features with another GT found in gram-negative bacteria (WaaG). WaaG is however continuously active and involved in synthesis of the protective lipopolysaccharide layer in the cell walls of Escherichia coli. The third type of enzymes investigated here are chitin synthases (ChS) coupled to filamentous growth in the oomycete Saprolegnia monoica. I have investigated two ChS-derived MIT domains that may be involved in membrane interactions within the endosomal pathway. From analysis of the three-dimensional structure and the amino-acid sequence, some important regions of these very large proteins were selected for in vitro studies. By the use of an array of biophysical methods (e.g. Nuclear Magnetic Resonance, Fluorescence and Circular Dichroism spectroscopy) and directed sequence analyses it was possible to shed light on some important details regarding the structure and membrane-interacting properties of the GTs. The importance of basic amino-acid residues and hydrophobic anchoring segments, both generally and for the abovementioned proteins specifically, is discussed. Also, the topology and amino-acid sequence of GT-B enzymes of the GT4 family are analyzed with emphasis on their biomembrane association modes. The results presented herein regarding the structural and lipid-interacting properties of GTs aid in the general understanding of glycosyltransferase activity. Since GTs are involved in a high number of biochemical processes in vivo it is of outmost importance to understand the underlying processes responsible for their activity, structure and interaction events. The results are likely to be useful for many applications and future experimental design within life sciences and biomedicine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitrones or azomethine-N-oxides are important precursors for the synthesis of several heterocyclic systems. They belong to the allyl anion type 1,3-dipoles and possess unique structural features which make them extraordinarily useful synthons. They behave as 1,3-dipoles in 1,3-dipolar cycloaddition reactions and as electrophiles in reactions with organometallic reagents. These are the two basic reactions given by nitrones. Nitrones also act as ‘spin traps’ in which they react with short-lived radicals to furnish stable nitroxide radicals which can be detected and identified by electron paramagnetic resonance (EPR) spectroscopy. Recently SmI2 catalysed reductive cross-coupling reactions of nitrones have gained significant interest in which the reactions are initiated by single electron transfer (SET) to nitrones. Apart from these reactions, nitrones are also known to participate in reactions which are initiated by the nucleophilic attack of nitrone-oxygen. In our group, we have also explored the nucleophilic character of nitrones through various reactions. The results obtained enabled us to develop a novel two-step one-pot strategy for quinolines and indoles - the heterocycles renowned for their pharmacological applications, from nitrones and electron deficient acetylenes. Using dibenzoylacetylene and phenylbenzoylacetylene as dipolarophiles, we could introduce a desired functional group at a predetermined position of the quinolines or indoles to be synthesised. In this context, the thesis entitled “NUCLEOPHILIC ADDITION OF NITRONES TO ELECTRON DEFICIENT ACETYLENES AND RELATED STUDIES” portrays our attempt to expand the scope of our x novel synthetic protocol using ester functionalised acetylenes: dimethyl acetylenedicarboxylate (DMAD) and methyl propiolate. The thesis is organised in to five chapters. The first chapter briefly describes the different classes of reactions that nitrone functionality can tolerate. The research problem is defined at the end of this chapter. The second chapter describes the synthesis of different nitrones used for the present study. The optimisation and expansion of scope of the novel strategy towards quinoline synthesis is discussed in the third chapter. The fourth chapter portrays the synthesis of indole-3-carboxylates using the novel strategy. In the fifth chapter, the reaction of N-(2,6-dimethylphenyl) and N-(2,4,6-trimethylphenyl)nitrones are discussed. Here we also discuss the mechanistic reinvestigation of Baldwin’s proposal in the isoxazoline-oxazoline rearrangement. The major outcome of the work is given at the end of the thesis. The structural formulae, schemes, tables and figures are numbered chapter-wise since each chapter of the thesis is organized as an independent unit. All new compounds (except two compounds reported in fourth chapter) are fully characterised on the basis of spectral and analytical data and single crystal X-ray analysis on representative examples. Relevant references are included at the end of individual chapters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Full Text / Article complet

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chapter 1 While targeting kinases in oncology research has been explored extensively, targeting protein phosphatases is currently in its infancy. However, a number of pharmaceutical companies are currently looking to expand their research efforts in this area. PP2A has been shown to down-regulate ERK5, a mitogen-activated protein kinase (MAPK) that has been shown to be important in driving the invasive phenotype of prostate cancer. Fostriecin and its related structural analogues PD 113,270 and 113,271 have been shown to inhibit a mitotic entry checkpoint in cell growth through the potent and selective inhibition of protein phosphatases PP1, PP2A, and PP4 (IC50 of 45 μM, 1.5 nM, and 3 nM respectively). Fostriecin is one of the most selective protein phosphatase inhibitors disclosed to date with a 104 fold selectivity for PP2A/PP4 versus PP1. Unfortunately, fostriecin and its analogues are very unstable, and this instability has effectively prevented them from being used as effective therapeutic leads. The microcystins and nodularins on the other hand, exhibit significant inhibitory activity against PP1 and PP2A (IC50 = 26 pM and 1.8 nM respectively), but their high toxicity has prevented any therapeutic application. Truncation of the ADDA chain from these polypeptides completely attenuates PP inhibitory activity. Simpler analogues incorporating the N-acylated ADDA chain and D-Ala retain moderate activity against PP1 and PP2A (IC50 = 1.0 μM and 0.17 μM respectively). The generation of a new series of fostriecin analogues to further expand its structure-activity relationship is envisaged with a view to creating new more stable PP2A inhibitors. It was hoped that by incorporating some of the more stable structural features of ADDA into fostriecin that stability and activity could be reconciled. With that in mind a series of PP2A inhibitors were synthesised and biologically evaluated. Chapter 2 GPCRs are an important area of research and are the targets of a quarter of the drugs on the market (2005). As a result, GPCRs continue to be at the forefront of research in both small and large drug companies. However one of the difficulties in studying this diverse class of membrane proteins is their tendency to denature in aqueous solution. As a result there is a pressing need to develop new detergents to solubilise, stabilise and crystallise GPCRs in their native form for further study. Cholesterol analogues have been shown to be important for stabilising membrane proteins and preventing their thermal inactivation. In addition the β2-adrenergic receptor, a GPCR membrane protein, has been crystallised in the active state with two cholesterol molecules bound between the I, II, III and IV helices of the protein. This appears to represent a distinct cholesterol binding pocket on the membrane protein that is speculated to be conserved across up to 44% of the rhodopsin class of GPCRs. CHOBIMALT is a cholesterol-based detergent that has been shown to exhibit promising GPCR-stabilising properties. When benchmarked against other cholesterol based detergents it was found to be superior to all others tested except for cholesteryl hemisuccinate.1 CHOBIMALT has an aggregation number of roughly 200 and forms 210 ± 30 kDa micelles, which are significantly larger than those of most detergents used for biological systems which is likely due to the packing constraints associated with CHOBMALT’s large polar headgroup.2 As a result, CHOBIMALT is used mostly as an additive to other commercially available detergents in order to decrease micelle size. A branched dimaltoside motif is common in recently synthesised detergents by Chae and co-workers. These detergents have shown promising detergent properties, for example the maltose neopentyl glycol (MNG) detergent synthesised by Chae. This branched dimaltoside detergent was shown to be able to solubilise and stabilise the very labile light harvesting complex I (LHI) from Rhodopsin capsulatus in its active form for 20 days with little loss of protein conformation.3 A cholesterol-based detergent was envisaged that combines the cholesterol framework of CHOBIMALT but replaces its linear tetrasaccharide with a branched dimaltoside. This detergent would then be investigated to assess its ability to solubilise, stabilise and crystallise GPCR proteins. This cholesterol-based detergent (shown below) was eventually synthesised in 9 linear steps from cholesterol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The production and perception of music is a multimodal activity involving auditory, visual and conceptual processing, integrating these with prior knowledge and environmental experience. Musicians utilise expressive physical nuances to highlight salient features of the score. The question arises within the literature as to whether performers’ non-technical, non-sound-producing movements may be communicatively meaningful and convey important structural information to audience members and co-performers. In the light of previous performance research (Vines et al., 2006, Wanderley, 2002, Davidson, 1993), and considering findings within co-speech gestural research and auditory and audio-visual neuroscience, this thesis examines the nature of those movements not directly necessary for the production of sound, and their particular influence on audience perception. Within the current research 3D performance analysis is conducted using the Vicon 12- camera system and Nexus data-processing software. Performance gestures are identified as repeated patterns of motion relating to music structure, which not only express phrasing and structural hierarchy but are consistently and accurately interpreted as such by a perceiving audience. Gestural characteristics are analysed across performers and performance style using two Chopin preludes selected for their diverse yet comparable structures (Opus 28:7 and 6). Effects on perceptual judgements of presentation modes (visual-only, auditory-only, audiovisual, full- and point-light) and viewing conditions are explored. This thesis argues that while performance style is highly idiosyncratic, piano performers reliably generate structural gestures through repeated patterns of upper-body movement. The shapes and locations of phrasing motions are identified particular to the sample of performers investigated. Findings demonstrate that despite the personalised nature of the gestures, performers use increased velocity of movements to emphasise musical structure and that observers accurately and consistently locate phrasing junctures where these patterns and variation in motion magnitude, shape and velocity occur. By viewing performance motions in polar (spherical) rather than cartesian coordinate space it is possible to get mathematically closer to the movement generated by each of the nine performers, revealing distinct patterns of motion relating to phrasing structures, regardless of intended performance style. These patterns are highly individualised both to each performer and performed piece. Instantaneous velocity analysis indicates a right-directed bias of performance motion variation at salient structural features within individual performances. Perceptual analyses demonstrate that audience members are able to accurately and effectively detect phrasing structure from performance motion alone. This ability persists even for degraded point-light performances, where all extraneous environmental information has been removed. The relative contributions of audio, visual and audiovisual judgements demonstrate that the visual component of a performance does positively impact on the over- all accuracy of phrasing judgements, indicating that receivers are most effective in their recognition of structural segmentations when they can both see and hear a performance. Observers appear to make use of a rapid online judgement heuristics, adjusting response processes quickly to adapt and perform accurately across multiple modes of presentation and performance style. In line with existent theories within the literature, it is proposed that this processing ability may be related to cognitive and perceptual interpretation of syntax within gestural communication during social interaction and speech. Findings of this research may have future impact on performance pedagogy, computational analysis and performance research, as well as potentially influencing future investigations of the cognitive aspects of musical and gestural understanding.