1000 resultados para sodium trace
Resumo:
Neuropeptide Y (NPY) is present in the adrenal medulla, in sympathetic neurons as well as in the circulation. This peptide not only exerts a direct vasoconstrictor effect, but also potentiates the vasoconstriction evoked by norepinephrine and sympathetic nerve stimulation. The vasoconstrictor effect of norepinephrine is also enhanced by salt loading and reduced by salt depletion. The purpose of this study was therefore to assess whether there exists a relationship between dietary sodium intake and the levels of circulating NPY. Uninephrectomized normotensive rats were maintained for 3 weeks either on a low, a regular or a high sodium intake. On the day of the experiment, plasma levels of NPY and catecholamines were measured in the unanesthetized animals. There was no significant difference in plasma norepinephrine and epinephrine levels between the 3 groups of rats. Plasma NPY levels were the lowest (65.4 +/- 8.8 fmol/ml, n-10, Mean +/- SEM) in salt-restricted and the highest (151.2 +/- 25 fmol/ml, n-14, p less than 0.02) in salt-loaded animals. Intermediate values were obtained in rats kept on a regular sodium intake (117.6 +/- 20.1 fmol/ml). These findings are therefore compatible with the hypothesis that sodium balance might to some extent influence blood pressure regulation via changes in circulating NPY levels which in turn modify blood pressure responsiveness.
Resumo:
Les développements technologiques et la spécialisation des laboratoires de police scientifique et de science forensique éloignent de plus en plus les spécialistes de leur objet d'étude: la trace comme vestige, avec toutes les difficultés associées à son caractère unique, non contrôlé qui lui donnent la dimension d'une recherche historique plus qu'expérimentale. Pour paraphraser Kirk (Kirk 1963), la discipline qui touche à l'exploitation des traces fait appel à une pléthore de moyens techniques, mais manque cruellement de recherches et de développements fondamentaux. Cela se reflète d'ailleurs dans l'absence de rigueur quant au vocabulaire utilisé et une confusion dans la nomenclature, par exemple entre l'empreinte (référent) et la trace, l'échantillon (statistiquement sélectionné) et le spécimen, l'analyse, qui n'est pas que chimique, la contamination et la pollution. Ce manque de rigueur traverse la littérature scientifique et cet essai vise à clarifier la terminologie et à proposer un emploi sémantique strict du vocabulaire et des notions de base qui touchent aux fondements de la discipline.
Resumo:
BACKGROUND: Members of the degenerin/epithelial (DEG/ENaC) sodium channel family are mechanosensors in C elegans, and Nav1.7 and Nav1.8 voltage-gated sodium channel knockout mice have major deficits in mechanosensation. β and γENaC sodium channel subunits are present with acid sensing ion channels (ASICs) in mammalian sensory neurons of the dorsal root ganglia (DRG). The extent to which epithelial or voltage-gated sodium channels are involved in transduction of mechanical stimuli is unclear. RESULTS: Here we show that deleting β and γENaC sodium channels in sensory neurons does not result in mechanosensory behavioural deficits. We had shown previously that Nav1.7/Nav1.8 double knockout mice have major deficits in behavioural responses to noxious mechanical pressure. However, all classes of mechanically activated currents in DRG neurons are unaffected by deletion of the two sodium channels. In contrast, the ability of Nav1.7/Nav1.8 knockout DRG neurons to generate action potentials is compromised with 50% of the small diameter sensory neurons unable to respond to electrical stimulation in vitro. CONCLUSION: Behavioural deficits in Nav1.7/Nav1.8 knockout mice reflects a failure of action potential propagation in a mechanosensitive set of sensory neurons rather than a loss of primary transduction currents. DEG/ENaC sodium channels are not mechanosensors in mouse sensory neurons.
Resumo:
In this review, we discuss genetic evidence supporting Guyton's hypothesis stating that blood pressure control is critically depending on fluid handling by the kidney. The review is focused on the genetic dissection of sodium and potassium transport in the distal nephron and the collecting duct that are the most important sites for the control of sodium and potassium balance by aldosterone and angiotensin II. Thanks to the study of Mendelian forms of hypertension and their corresponding transgenic mouse models, three main classes of diuretic receptors (furosemide, thiazide, amiloride) and the main components of the aldosterone- and angiotensin-dependent signaling pathways were molecularly identified over the past 20years. This will allow to design rational strategies for the treatment of hypertension and for the development of the next generation of diuretics.
Resumo:
The circadian clock contributes to the control of BP, but the underlying mechanisms remain unclear. We analyzed circadian rhythms in kidneys of wild-type mice and mice lacking the circadian transcriptional activator clock gene. Mice deficient in clock exhibited dramatic changes in the circadian rhythm of renal sodium excretion. In parallel, these mice lost the normal circadian rhythm of plasma aldosterone levels. Analysis of renal circadian transcriptomes demonstrated changes in multiple mechanisms involved in maintaining sodium balance. Pathway analysis revealed the strongest effect on the enzymatic system involved in the formation of 20-HETE, a powerful regulator of renal sodium excretion, renal vascular tone, and BP. This correlated with a significant decrease in the renal and urinary content of 20-HETE in clock-deficient mice. In summary, this study demonstrates that the circadian clock modulates renal function and identifies the 20-HETE synthesis pathway as one of its principal renal targets. It also suggests that the circadian clock affects BP, at least in part, by exerting dynamic control over renal sodium handling.
Resumo:
The highly amiloride-sensitive epithelial sodium channel (ENaC) is an apical membrane constituent of cells of many salt-absorbing epithelia. In the kidney, the functional relevance of ENaC expression has been well established. ENaC mediates the aldosterone-dependent sodium reabsorption in the distal nephron and is involved in the regulation of blood pressure. Mutations in genes encoding ENaC subunits are causative for two human inherited diseases: Liddle's syndrome, a severe form of hypertension associated with ENaC hyperfunction, and pseudohypoaldosteronism (PHA-1), a salt-wasting syndrome caused by decreased ENaC function. Transgenic mouse technologies provide a useful tool to study the role of ENaC in vivo. Different mouse lines have been established in which each of the ENaC subunits was affected. The phenotypes observed in these mice demonstrated that each subunit is essential for survival and for regulation of sodium transport in kidney and colon. Moreover, the alpha subunit plays a specific role in the control of fluid absorption in the airways at birth. Such mice can now be used to study the role of ENaC in various organs and can serve as models to understand the pathophysiology of these human diseases.
Resumo:
Tonoplast-enriched membranes were prepared from maize (Zea mays L. cv LG 11) primary roots, using sucrose nonlinear gradients. The functional molecular size of the tonoplast ATP-and PPi-dependent proton pumps were analyzed by radiation inactivation. Glucose-6-phosphate dehydrogenase (G6PDH) was added as an internal standard. Frozen samples (-196 degrees C) of the membranes were irradiated with (60)Co for different periods of time. After thawing the samples, the activities of G6PDH, ATPase, and PPase were tested. By applying target theory, the functional sizes of the ATPase and PPase in situ were found to be around 540 and 160 kilodaltons, respectively. The two activities were solubilized and separated by gel filtration chromatography. The different polypeptides copurifying with the two pumps were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two bands (around 59 and 65 kilodaltons) were associated with the ATPase activity, whereas a double band (around 40 kilodaltons) was recovered with the PPase activity.
Resumo:
Ion imaging is a powerful methodology to assess fundamental biological processes in live cells. The limited efficiency of some ion-sensing probes and their fast leakage from cells are important restrictions to this approach. In this study, we present a novel strategy based on the use of dendrimer nanoparticles to obtain better intracellular retention of fluorescent probes and perform prolonged fluorescence imaging of intracellular ion dynamics. A new sodium-sensitive nanoprobe was generated by encapsulating a sodium dye in a PAMAM dendrimer nanocontainer. This nanoprobe is very stable and has high sodium sensitivity and selectivity. When loaded in neurons in live brain tissue, it homogenously fills the entire cell volume, including small processes, and stays for long durations, with no detectable alterations of cell functional properties. We demonstrate the suitability of this new sodium nanosensor for monitoring physiological sodium responses such as those occurring during neuronal activity.
Resumo:
Water balance is achieved through the ability of the kidney to control water reabsorption in the connecting tubule and the collecting duct. In a mouse cortical collecting duct cell line (mCCD(c11)), physiological concentrations of arginine vasopressin increased both electrogenic, amiloride-sensitive, epithelial sodium channel (ENaC)-mediated sodium transport measured by the short-circuit current (Isc) method and water flow (Jv apical to basal) measured by gravimetry with similar activation coefficient K(1/2) (6 and 12 pM, respectively). Jv increased linearly according to the osmotic gradient across the monolayer. A small but highly significant Jv was also measured under isoosmotic conditions. To test the coupling between sodium reabsorption and water flow, mCCD(c11) cells were treated for 24 h under isoosmotic condition with either diluent, amiloride, vasopressin or vasopressin and amiloride. Isc, Jv, and net chemical sodium fluxes were measured across the same monolayers. Around 30% of baseline and 50% of vasopressin-induced water flow is coupled to an amiloride-sensitive, ENaC-mediated, electrogenic sodium transport, whereas the remaining flow is coupled to an amiloride-insensitive, nonelectrogenic sodium transport mediated by an unknown electroneutral transporter. The mCCD(c11) cell line is a first example of a mammalian tight epithelium allowing quantitative study of the coupling between sodium and water transport. Our data are consistent with the 'near isoosmotic' fluid transport model.