999 resultados para seed processing
Resumo:
The microbiological quality of beef and meat products is strongly influenced by the conditions of hygiene prevailing during their production and handling. Without proper hygienic control, the environment in slaughterhouses and butcher shops can act as an important source of microbiological contamination. To identify the main points of microbiological contamination in the beef processing chain, 443 samples of equipment, installations and products were collected from 11 establishments (1 slaughterhouse and 10 butcher shops) located in the state of Paraná, Brazil. The microbiological quality of all the samples was evaluated using Petri dishes to obtain counts of mesophilic aerobes (AC), total coliforms, Escherichia coli (EC), yeasts and molds (YM). The main contamination points identified in butcher shops, in decreasing order, were stainless steel boxes, beef tenderizers, grinders, knives, mixers, sausage stuffers, plastic boxes, floors and drains. In the slaughterhouse, these points were sausage stuffers, platforms, floors and drains. The most severely contaminated products were fresh sausages and ground beef. This information about the main points of microbiological contamination in the beef processing chain is expected to aid professionals responsible for hygiene in similar establishments to set up proper hygienic procedures to prevent or reduce microbiological contamination of beef and meat products.
Resumo:
Aiming at improving the quality of Perna perna mussels cultivated and commercialized in Ubatuba, SP, Brazil, the growth and elimination of Staphylococcus aureus and Bacillus cereus artificially inoculated in mussels were studied. The inoculation was carried out in "in natura" and pre-cooked mussels for 30 min, and after that the mussels were kept for 10 hours at room temperature (25 ± 1 °C) and under refrigeration (7 ± 1 °C). Six thermal treatments were evaluated: three using steam (5, 10 and 15 minutes) and three in boiling water (5, 10 and 15 minutes), in order to find the best time/temperature binomial to provide pathogenic control. Yield and physical-chemical and sensory characteristics were evaluated. All thermal treatments were efficient to eliminate microorganisms in 2 logarithmic cycles. However, the boiling water treatments presented better results than the steam treatments. The physical-chemical and sensory analyses did not show statistical differences among the thermal treatments studied. The best performances were reached in the shortest times of heat exposure. Overall, the treatments in boiling water presented better results than the steam treatments.
Resumo:
This study is done to examine waste power plant’s optimal processing chain and it is important to consider from several points of view on why one option is better than the other. This is to insure that the right decision is made. Incineration of waste has devel-oped to be one decent option for waste disposal. There are several legislation matters and technical options to consider when starting up a waste power plant. From the tech-niques pretreatment, burner and flue gas cleaning are the biggest ones to consider. The treatment of incineration residues is important since it can be very harmful for the envi-ronment. The actual energy production from waste is not highly efficient and there are several harmful compounds emitted. Recycling of waste before incineration is not very typical and there are not many recycling options for materials that cannot be easily re-cycled to same product. Life cycle assessment is a good option for studying the envi-ronmental effect of the system. It has four phases that are part of the iterative study process. In this study the case environment is a waste power plant. The modeling of the plant is done with GaBi 6 software and the scope is from gate-to-grave. There are three different scenarios, from which the first and second are compared to each other to reach conclusions. Zero scenario is part of the study to demonstrate situation without the power plant. The power plant in this study is recycling some materials in scenario one and in scenario two even more materials and utilize the bottom ash more ways than one. The model has the substitutive processes for the materials when they are not recycled in the plant. The global warming potential results show that scenario one is the best option. The variable costs that have been considered tell the same result. The conclusion is that the waste power plant should not recycle more and utilize bottom ash in a number of ways. The area is not ready for that kind of utilization and production from recycled materials.
Resumo:
Despite its high nutritional value, soymilk consumption in Western countries is limited mainly due to undesirable flavors developed during the traditional elaboration process. Brazil nut (Bertholletia excelsa) has pleasant flavor and recognized nutritional value. Thus, the aim of this work was to elaborate a soy and Brazil nut beverage exploring the use of two national products of high nutritional quality. The process for manufacturing a soy and Brazil nut beverage consisted of elaboration, formulation, and homogenization of soymilk and Brazil nut milk. The addition of five levels (10, 20, 30, 40, and 50%) of Brazil nut milk to soy beverages was investigated. Although no significant differences in consumer average preference (p > 0.05) were observed among the beverages, analyzing both the consumer preference frequency distribution of the products and the Internal Preference Mapping (IPM), it was possible to conclude that the beverage with 30% of Brazil nut milk reached the most adequate performance demonstrating the sensory benefits Brazil nuts brought to the product. Regarding proximate composition, it did not present a better performance in terms of nutritional value, except for the oil content. The soy and Brazil nut beverage presented visual stability and no phase separation despite the non-stability shown by Brazil nut beverage itself. When Brazil nut milk was added to soy beverage, the final product became whiter than soy beverage, which is appealing to consumers who normally search for a clearer soymilk. The soy and Brazil nut beverage processing can be considered an alternative to increase the use of Brazil nuts in the Brazilian diet.
Resumo:
The determination of the sterilization value for low acid foods in retorts includes a critical evaluation of the factory's facilities and utilities, validation of the heat processing equipment (by heat distribution assays), and finally heat penetration assays with the product. The intensity of the heat process applied to the food can be expressed by the Fo value (sterilization value, in minutes, at a reference temperature of 121.1 °C, and a thermal index, z, of 10 °C, for Clostridium botulinum spores). For safety reasons, the lowest value for Fo is frequently adopted, being obtained in heat penetration assays as indicative of the minimum process intensity applied. This lowest Fo value should always be higher than the minimum Fo recommended for the food in question. However, the use of the Fo value for the coldest can fail to statistically explain all the practical occurrences in food heat treatment processes. Thus, as a result of intense experimental work, we aimed to develop a new focus to determine the lowest Fo value, which we renamed the critical Fo. The critical Fo is based on a statistical model for the interpretation of the results of heat penetration assays in packages, and it depends not only on the Fo values found at the coldest point of the package and the coldest point of the equipment, but also on the size of the batch of packages processed in the retort, the total processing time in the retort, and the time between CIPs of the retort. In the present study, we tried to explore the results of physical measurements used in the validation of food heat processes. Three examples of calculations were prepared to illustrate the methodology developed and to introduce the concept of critical Fo for the processing of canned food.
Resumo:
In the present work, a hydroethanolic extract was prepared from the entire seeds of pomegranate [Punica granatum L. (Punicaceae)] with Cachaça, a distilled Brazilian alcoholic beverage, protected from light for an 80-hour period. The desorption curve of the seeds, presented an optimal time extraction of approximately 24 hours. The extract was divided into two samples: protected from light, (Extract 1), or not, (Extract 2). The extracts were characterized by UV-Visible absorption spectroscopy, quantification of total phenolics by the Folin-Ciocalteu method, and the antioxidant activity was determined by the DPPH quenching method. Extract 2 presented 9.8% less total polyphenols than Extract 1. The pomegranate seeds extract lost 79% of its antioxidant activity during light exposure. Extract 1 up to 3% (w/v) showed neither cyto nor phototoxicity in the Hela cells. In conclusion, Punica granatum L. seeds contain a significant total polyphenol and TEAC amount and they can be used in simple extractive process, by direct contact with Cachaça in up to 80 hours in the darkness, which gives it good coloration, taste, and smell. This extract showed neither cytotoxicity nor post-irradiation phototoxicity with solar simulator even though the extract proved photoinstable.
Resumo:
Guava nectars were formulated for approximately 10, 12, or 14 ºBrix, with 40% guava pulp. Sodium benzoate, 500 mg.kg-1 was used as preservative. The Brix value was adjusted with saturated sucrose syrup. The guava nectar was pasteurized (85 ºC/42 seconds) in tubular heat exchanger and then hot filled in 500 mL white glass bottles. The products were stored either at room temperature (25 ± 5 ºC) or refrigerated (5 ± 2 ºC) under fluorescent light exposure and analyzed on the day after processing (time zero) and also 40, 80, and 120 days of storage. Eight compounds were identified and quantified by Gas Chromatography (GC) -Mass Spectrometry (MS): hexanal, (E)-hex-2-enal, 1-hexenol, (Z)-hex-3-enol, (Z)-hex-3-enyl acetate, phenyl-3-propyl acetate, cinnamyl acetate, and acetic acid. There was no significant effect of thermal treatment on the volatile compound concentrations, except for a significant decrease (p = 0.0001) in hexanal and (Z)-hex-3-enyl acetate (p = 0.0029). As for the storage time, there was a much greater decrease in the esters contents, such as (Z)-hex-3-enyl and phenyl-3-propyl acetates. Cinnamyl acetate had the greatest decrease over storage time. Refrigeration was better than room temperature for guava nectar volatile compounds stability over storage time, mainly for esters compounds, which are important for the product aroma and flavor
Resumo:
The Brazil nut (Bertholletia excelsea H. B. K.) is noteworthy for its high content of lipids and proteins of elevated biological value and these factors justify the need for further research and incentives for the manufacturing of new trade products. In the present study we sought new forms of technological use of these nuts by the food industry, through their processing as flour, with no alteration in its energy content. The results after its elaboration showed a product with high energy value (431.48 kcal.100 g-1), protein content of 45.92 g.100 g-1, and fiber of 17.14%. The thermal analyses indicate that the introduction of another protein component, such as soy protein isolate, does not alter the reactions or thermal behavior. On the other hand, morphological analyses revealed granular structures similar to the structure of globular proteins. It was observed that after processing to obtain the flour, the product maintains its protein-energy content, as well as its characteristics when subjected to high temperatures.
Resumo:
The Consumers' interest for products with caloric reduction has increased, and their development is a technological challenge. The consumption of cakes has grown in importance and the demand for dietary products has stimulated the use of sweeteners and the optimization of bakery products. The consumption of fibers is related to chronic diseases prevention. Pumpkin seeds (maximum Cucurbita, L.), rich in fibers, can be used as a source of fiber in food products. A gluten-free diet is not easy to follow since gluten free products are not always available. The objective of this work was to perform a physicochemical characterization of cakes prepared with flours blends (FB) based on Pumpkin Seed Flour (PSF). The cakes were elaborated with FB in the ratios of 30:70 (C30) and 40:60 (C40) of PSF and cornstarch (CS), respectively. The results showed gluten absence and near-neutral pH. The chemical analysis of C30 and B40 showed increase of ashes, lipids, proteins, and insoluble dietary fiber and a decrease in the content of carbohydrates and calories. The chemical composition of C40 presented the greatest content of lipids, proteins, and dietary fibers, the lowest content of calories, and the best physical parameters. Therefore, both products proved suitable for human consumption.
Resumo:
The effects of mango seed extract (MSE) and butylated hydroxytoluene (BHT) on pH, lipid oxidation, and color of Bologna-type mortadella during refrigerated storage for 21 days were studied. Bologna-type mortadella samples were formulated to contain 0.1% MSE, 0.2% MSE, or 0.01% BHT. After 14 days of storage, the products containing MSE 0.1 or 0.2% had higher pH values than those containing BHT 0.01%. Lipid oxidation values increased with storage time but were not affected by the type of antioxidant. The highest values for color parameter L* were observed for mortadella containing BHT 0.01% after 7, 14, and 21 days of storage. Values for the color parameters a* and b* tended to decrease during mortadella storage. Products containing 0.1 or 0.2% MSE showed higher values for color parameter a* and lower values for color parameter b* compared to those containing 0.01% BHT. It can be concluded that MSE can be used in 0.1 or 0.2% levels in Bologna-type mortadella with similar or better antioxidant effects than those of BHT 0.01%.
Resumo:
The objective of this research project was to study the drying of soymilk residue in a pneumatic flash dryer, using response Surface Methodology (RSM), and to evaluate the quality of the dried residue. Soymilk residue, also known as okara, was provided by a Brazilian soymilk factory. RSM showed that for a 120 second drying cycle, the lower the residue moisture contents (y) obtained, the higher the recirculation rates (x1), regardless of the air drying temperature (x2), and it could be expressed by the equation y = 7.072 - 7.92x1, with R² = 92,92%. It is possible to obtain okara with 10% of moisture (dwb) under the condition x1=1.25, equivalent to RR = 61%, with air drying temperatures ranging from 252 °C to 308 °C. The dried okara obtained through Central Compound Rotational Design (CCRD) presented a centesimal composition similar to the okara dried in a tray dryer, known as the original okara. There were significant variations (p < 0.05) in the Emulsifying Capacity (EC), Emulsion Stability (ES) and Protein Solubility (PS) between the dehydrated residues obtained. It was concluded that the flash drying of okara is technically feasible and that the physicochemical composition of the residue was not altered; on the contrary, the process promoted a positive effect on the technological functional properties.
Effect of processing on antioxidant potential and total phenolics content in beet (Beta vulgaris L.)
Resumo:
The antioxidant capacity of beet is associated with non-nutritive constituents, such as phenolic compounds. The purpose of this research was to evaluate the effect of two different heat-processing techniques (drying and canned) on the antioxidant potential (ABTS) and phenolics content of beets. A forced air circulation dehydrator was used for the drying. Drying at high temperatures (100 + 90 °C/5.6 hours; 90 °C/6 hours) increased the antioxidant potential of the processed products while mild drying conditions decreased it (80 °C/6 hours; 100 + 70 °C/6 hours) or had no effect on it (70 °C/7 hours; 100 + 80 °C/6 hours). For the canned products, the antioxidant potential did not differ according to the pH (4.2 to 3.8) for any of the four acids tested. Some processing methods influenced the antioxidant potential of the processed products, and this was also dependent on changes in the total phenolics content.
Resumo:
Passion fruit is widely consumed due to its pleasant flavour and aroma acidity, and it is considered very important a source of minerals and vitamins. It is used in many products such as ice-cream, mousses and, especially, juices. However, the processing of passion fruit juice may modify the composition and biodisponibility of the bioactive compounds. Investigations of the effects of processing on nutritional components in tropical juices are scarce. Frequently, only losses of vitamin C are evaluated. The objective of this paper is to investigate how some operations of passion fruit juice processing (formulation/homogeneization/thermal treatment) affect this product's chemical and physicochemical characteristics. The results showed that the chemical and physicochemical characteristics are little affected by the processing although a reduction in vitamin C contents and anthocyanin, large quantities of carotenoids was verified even after the pasteurization stage.