906 resultados para renal biological activity
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Farmacêuticas - FCFAR
Resumo:
Pós-graduação em Ciências Farmacêuticas - FCFAR
Resumo:
NEWEST (Neoadjuvant Endocrine Therapy for Women with Estrogen-Sensitive Tumors) is the first study to compare biological and clinical activity of fulvestrant 500 versus 250 mg in the neoadjuvant breast cancer setting. We hypothesized that fulvestrant 500 mg may be superior to 250 mg in blocking estrogen receptor (ER) signaling and growth. A multicenter, randomized, open-label, Phase II study was performed to compare fulvestrant 500 mg (500 mg/month plus 500 mg on day 14 of month 1) versus fulvestrant 250 mg/month for 16 weeks prior to surgery in postmenopausal women with ER+ locally advanced breast cancer. Core biopsies at baseline, week 4, and surgery were assessed for biomarker changes. Primary endpoint: change in Ki67 labeling index (LI) from baseline to week 4 determined by automated computer imaging system (ACIS). Secondary endpoints: ER protein expression and function; progesterone receptor (PgR) expression; tumor response; tolerability. ER and PgR were examined retrospectively using the H score method. A total of 211 patients were randomized (fulvestrant 500 mg: n = 109; 250 mg: n = 102). At week 4, fulvestrant 500 mg resulted in greater reduction of Ki67 LI and ER expression versus 250 mg (-78.8 vs. -47.4% [p < 0.0001] and -25.0 vs. -13.5% [p = 0.0002], respectively [ACIS]); PgR suppression was not significantly different (-22.7 vs. -17.6; p = 0.5677). However, H score detected even greater suppression of ER (-50.3 vs. -13.7%; p < 0.0001) and greater PgR suppression (-80.5 vs. -46.3%; p = 0.0018) for fulvestrant 500 versus 250 mg. At week 16, tumor response rates were 22.9 and 20.6% for fulvestrant 500 and 250 mg, respectively, with considerable decline in all markers by both ACIS and H score. No detrimental effects on endometrial thickness or bone markers and no new safety concerns were identified. This provides the first evidence of greater biological activity for fulvestrant 500 versus 250 mg in depleting ER expression, function, and growth.
Resumo:
Methane (CH4) emission from agricultural soils increases dramatically as a result of deleterious effect of soil disturbance and nitrogen fertilization on methanotrophic organisms; however, few studies have attempted to evaluate the potential of long-term conservation management systems to mitigate CH4 emissions in tropical and subtropical soils. This study aimed to evaluate the long-term effect (>19 years) of no-till grass- and legume-based cropping systems on annual soil CH4 fluxes in a formerly degraded Acrisol in Southern Brazil. Air sampling was carried out using static chambers and CH4 analysis by gas chromatography. Analysis of historical data set of the experiment evidenced a remarkable effect of high C- and N-input cropping systems on the improvement of biological, chemical, and physical characteristics of this no-tilled soil. Soil CH4 fluxes, which represent a net balance between consumption (-) and production (+) of CH4 in soil, varied from -40 +/- 2 to +62 +/- 78 mu g C m(-2) h(-1). Mean weighted contents of ammonium (NH4+-N) and dissolved organic carbon (DOC) in soil had a positive relationship with accumulated soil CH4 fluxes in the post-management period (r(2) = 0.95, p = 0.05), suggesting an additive effect of these nutrients in suppressing CH4 oxidation and stimulating methanogenesis, respectively, in legume-based cropping systems with high biomass input. Annual CH4 fluxes ranged from -50 +/- 610 to +994 +/- 105 g C ha(-1), which were inversely related to annual biomass-C input (r(2) = 0.99, p = 0.003), with the exception of the cropping system containing pigeon pea, a summer legume that had the highest biologically fixed N input (>300 kg ha(-1) yr(-1)). Our results evidenced a small effect of conservation management systems on decreasing CH4 emissions from soil, despite their significant effect restoring soil quality. We hypothesized that soil CH4 uptake strength has been off-set by an injurious effect of biologically fixed N in legume-based cropping systems on soil methanotrophic microbiota, and by the methanogenesis increase as a result of the O-2 depletion in niches of high biological activity in the surface layer of the no-tillage soil. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
ELECTROCHEMICAL AND CALORIMETRIC INVESTIGATION OF INTERACTION OF NOVEL BISCATIONIC ANTICANCER AGENTS WITH DNA. Biscationic amidines bind in the DNA minor groove and present biological activity against a range of infectious diseases. Two new biscationic compounds (bis-alpha,omega-S-thioureido, amino and sulfide analogues) were synthesized in good yields and fully characterized, and their interaction with DNA was also investigated. Isothermal titration calorimetry (ITC) was used to measure the thermodynamic properties of binding interactions between DNA and these ligands. A double stranded calf thymus DNA immobilized on an electrode surface was used to study the possible DNA-interacting abilities of these compounds towards dsDNA in situ. A remarkable interaction of these compounds with DNA was demonstrated and their potential application as anticancer agents was furthered.
Resumo:
Sea anemones are known to contain a wide diversity of biologically active peptides, mostly unexplored according to recent peptidomic and transcriptomic studies. In the present work, the neurotoxic fractions from the exudates of Stichodactyla helianthus and Bunodosoma granulifera were analyzed by reversed-phase chromatography and mass spectrometry. The first peptide fingerprints of these sea anemones were assessed, revealing the largest number of peptide components (156) so far found in sea anemone species, as well as the richer peptide diversity of B. granulifera in relation to S. helianthus. The transcriptomic analysis of B. granulifera, performed by massive cDNA sequencing with 454 pyrosequencing approach allowed the discovery of five new APETx-like peptides (U-AITX-Bg1a-e - including the full sequences of their precursors for four of them), which together with type 1 sea anemone sodium channel toxins constitute a very distinguishable feature of studied sea anemone species belonging to genus Bunodosoma. The molecular modeling of these new APETx-like peptides showed a distribution of positively charged and aromatic residues in putative contact surfaces as observed in other animal toxins. On the other hand, they also showed variable electrostatic potentials, thus suggesting a docking onto their targeted channels in different spatial orientations. Moreover several crab paralyzing toxins (other than U-AITX-Bg1a-e), which induce a variety of symptoms in crabs, were isolated. Some of them presumably belong to new classes of crab-paralyzing peptide toxins, especially those with molecular masses below 2 kDa, which represent the smallest peptide toxins found in sea anemones. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
PPAR delta is a nuclear receptor that, when activated, regulates the metabolism of carbohydrates and lipids and is related to metabolic syndrome and type 2 diabetes. To understand the main interactions between ligands and PPAR delta, we have constructed 2D and 3D QSAR models and compared them with HOMO, LUMO and electrostatic potential maps of the compounds studied, as well as docking results. All QSAR models showed good statistical parameters and prediction outcomes. The QSAR models were used to predict the biological activity of an external test set, and the predicted values are in good agreement with the experimental results. Furthermore, we employed all maps to evaluate the possible interactions between the ligands and PPAR delta. These predictive QSAR models, along with the HOMO, LUMO and MEP maps, can provide insights into the structural and chemical properties that are needed in the design of new PPAR delta ligands that have improved biological activity and can be employed to treat metabolic diseases.
Resumo:
The stingless bees are an important component of the insect biomass in many tropical areas, due to their collection of nectar and pollen. Trigona spinipes is a widely distributed species in South America, and described as a pollinator of many crops that can be used in a commercial pollinating system. The effects of plant extracts on insects are studied because of the demand for organic food and their selectivity to natural enemies. Plant insecticides are reported as a potential agent for the control of insect pests, however little is known about their impact on beneficial insects. This study investigated the survival of Trigona spinipes (Hymenoptera: Apidae, Meliponini) Fabricius, after exposure to the leaf extracts of Azadiracha indica (Meliaceae), Lippia sidoides (Verbenaceae), Sapindus saponaria (Sapindaceae), Anonna squamosa (Anonnaceae) Cymbopogon winterianum (Poaceae), Corimbia citriodora (Myrtaceae), Jatropha curcas (Euphorbiaceae) and Ricinus communis (Euphorbiaceae) and of seeds of Azadiracha indica, Ricinus communis Nordestina and AL Guarany varieties and Jatropha curcas. The extracts that had the greatest influence on the survival of the bees were A. indica at 3% and 7% of concentration, A. squamosa at a concentration of 10% with 68.89% survival and green leaf of R. communis at a concentration of 7%. The results show that although the extracts were effective in controlling pests, they may also affect the pollinator Trigona spinipes.
Resumo:
Background: Sugarcane cultivation plays an important role in Brazilian economy, and it is expanding fast, mainly due to the increasing demand for ethanol production. In order to understand the impact of sugarcane cultivation and management, we studied sugarcane under different management regimes (pre-harvest burn and mechanical, unburnt harvest, or green cane), next to a control treatment with native vegetation. The soil bacterial community structure (including an evaluation of the diversity of the ammonia oxidizing (amoA) and denitrifying (nirK) genes), greenhouse gas flow and several soil physicochemical properties were evaluated. Results: Our results indicate that sugarcane cultivation in this region resulted in changes in several soil properties. Moreover, such changes are reflected in the soil microbiota. No significant influence of soil management on greenhouse gas fluxes was found. However, we did find a relationship between the biological changes and the dynamics of soil nutrients. In particular, the burnt cane and green cane treatments had distinct modifications. There were significant differences in the structure of the total bacterial, the ammonia oxidizing and the denitrifying bacterial communities, being that these groups responded differently to the changes in the soil. A combination of physical and chemical factors was correlated to the changes in the structures of the total bacterial communities of the soil. The changes in the structures of the functional groups follow a different pattern than the physicochemical variables. The latter might indicate a strong influence of interactions among different bacterial groups in the N cycle, emphasizing the importance of biological factors in the structuring of these communities. Conclusion: Sugarcane land use significantly impacted the structure of total selected soil bacterial communities and ammonia oxidizing and denitrifier gene diversities in a Cerrado field site in Central Brazil. A high impact of land use was observed in soil under the common burnt cane management. The green cane soil also presented different profiles compared to the control soil, but to at a lesser degree.
Resumo:
Background The risks of hormone replacement therapy have led to a search for new alternatives such as phytoestrogens, plant compounds with estrogen-like biological activity. Isoflavones are the phytoestrogens most extensively studied and can be found in soybean, red clover and other plants. Due to this estrogen-like activity, phytoestrogens can have some effect on atherosclerosis. Human umbilical vein endothelial cells (HUVEC) have been extensively used to study the biology and pathobiology of human endothelial cells and most of the knowledge acquired is due to experiments with cultures of these cells. Objective To evaluate the effects of the phytoestrogen extracts from Glycine max soy bean, genistein, formononetin, biochanin A and daidzein, as well as a mixture of these extracts (Mix), on expression of adhesion molecules, VCAM-1, ICAM-1 and E-selectin, by endothelial cell HUVEC, stimulated with lipopolysaccharide. Methods HUVEC were cultured in medium EBM2, pretreated with isoflavones for 24 and 48 h and then stimulated with lipopolysaccharide; in addition, isoflavones were added, after stimulation by lipopolysaccharide, to HUVEC. We evaluated the production of VCAM-1, ICAM-1 and E-selectin on cell surface, by cell-based enzyme immunoassay, and of sVCAM-1, sICAM-1 and sE-selectin in culture supernatant, by ELISA. Results Genistein, formononetin, biochanin A and daidzein, as well as the Mix were able to reduce VCAM-1, ICAM-1 and E-selectin on cell surface and in culture supernatant. Conclusion Isoflavones extracted from Glycine max soy bean, in vitro, presented antiatherogenic effects, reducing the expression of adhesion molecules and acting as preventive agents as well as therapeutic agents.
Resumo:
Hemophilia A is caused by a deficiency in coagulation factor VIII. Recombinant factor VIII can be used as an alternative although it is unavailable for most patients. Here, we describe the production of a human recombinant B-domain-deleted FVIII (rBDDFVIII) by the human cell line SK-HEP-1, modified by a lentiviral vector rBDDFVIII was produced by recombinant SK-HEP cells (rSK-HEP) at 1.5-2.1 IU/10(6) in 24 h. The recombinant factor had increased in vitro stability when compared to commercial pdFVIII. The functionality of rBDDFVIII was shown by its biological activity and by tail-clip challenge in hemophilia A mice. The rSK-HEP cells grew in a scalable system and produced active rBDDFVIII, indicating that this platform production can be optimized to meet the commercial production scale needs.
Resumo:
The human granulocyte colony stimulating factor (hG-CSF) plays an important role in hematopoietic cell proliferation/differentiation and has been widely used as a therapeutic agent for treating neutropenias. Nartograstim is a commercial G-CSF that presents amino acid changes in specific positions when compared to the wildtype form, which potentially increase its activity and stability. The aim of this work was to develop an expression system in Escherichia coli that leads to the production of large amounts of a recombinant hG-CSF (rhG-CSF) biosimilar to Nartograstim. The nucleotide sequence of hg-csf was codon-optimized for expression in E. coli. As a result, high yields of the recombinant protein were obtained with adequate purity, structural integrity and biological activity. This protein has also been successfully used for the production of specific polyclonal antibodies in mice, which could be used in the control of the expression and purification in an industrial production process of this recombinant protein. These results will allow the planning of large-scale production of this mutant version of hG-CSF (Nartograstim), as a potential new biosimilar in the market.
Resumo:
Drug discovery has moved toward more rational strategies based on our increasing understanding of the fundamental principles of protein-ligand interactions. Structure( SBDD) and ligand-based drug design (LBDD) approaches bring together the most powerful concepts in modern chemistry and biology, linking medicinal chemistry with structural biology. The definition and assessment of both chemical and biological space have revitalized the importance of exploring the intrinsic complementary nature of experimental and computational methods in drug design. Major challenges in this field include the identification of promising hits and the development of high-quality leads for further development into clinical candidates. It becomes particularly important in the case of neglected tropical diseases (NTDs) that affect disproportionately poor people living in rural and remote regions worldwide, and for which there is an insufficient number of new chemical entities being evaluated owing to the lack of innovation and R&D investment by the pharmaceutical industry. This perspective paper outlines the utility and applications of SBDD and LBDD approaches for the identification and design of new small-molecule agents for NTDs.
Oleoresin glands in copaiba (Copaifera trapezifolia Hayne: Leguminosae), a Brazilian rainforest tree
Resumo:
Although studies have addressed the chemical analysis and the biological activity of oleoresin in species of Copaifera, the cellular mechanisms of oleoresin production, storage, and release have rarely been investigated. This study detailed the distribution, ontogeny, and ultrastructure of secretory cavities and canals distributed in leaf and stem, respectively, of Copaifera trapezifolia, a Brazilian species included in a plant group of great economic interest. Axillary vegetative buds, leaflets, and portions of stem in primary and secondary growth were collected and processed in order to study the anatomy, histolocalization of substances, and ultrastructure. Secretory cavities are observed in the foliar blade and secretory canals in the petiolule and stem. They are made up of a uniseriate epithelium delimiting an isodiametric or elongated lumen. Biseriate epithelium is rarely observed and is a novelty for Leguminosae. Cavities and canals originate from ground meristem cells and the lumen is formed by schizogenesis. The content of the cavities and canals of both stem and leaf is oily and resinous, which suggests that the oleoresin could be extracted from the leaf instead of the stem. Phenolic compounds are also detected in the epithelial cell cytoplasm. Cavities and canals in the beginning of developmental stages have polarized epithelial cells. The cytoplasm is rich in smooth and rough endoplasmic reticula connected to vesicles or plastids. Smooth and rough endoplasmic reticulum and plastids were found to be predominant in the epithelial cells of the secretory cavities and canals of C. trapezifolia. Such features testify the quantities of oleoresin found in the lumen and phenolic compounds in the epithelial cell cytoplasm of these glands. Other studies employing techniques such as correlative light electron microscopy could show the vesicle traffic and the compartmentalization of the produced substances in such glands.