865 resultados para protease-activated receptor-2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of tissue transglutaminase (TG2) in angiogenesis is unclear and contradictory. Here we show that inhibition of extracellular TG2 protein crosslinking or downregulation of TG2 expression leads to inhibition of angiogenesis in cell culture, the aorta ring assay and in vivo models. In a human umbilical vein endothelial cell (HUVEC) co-culture model, inhibition of extracellular TG2 activity can halt the progression of angiogenesis, even when introduced after tubule formation has commenced and after addition of excess vascular endothelial growth factor (VEGF). In both cases, this leads to a significant reduction in tubule branching. Knockdown of TG2 by short hairpin (shRNA) results in inhibition of HUVEC migration and tubule formation, which can be restored by add back of wt TG2, but not by the transamidation-defective but GTP-binding mutant W241A. TG2 inhibition results in inhibition of fibronectin deposition in HUVEC monocultures with a parallel reduction in matrix-bound VEGFA, leading to a reduction in phosphorylated VEGF receptor 2 (VEGFR2) at Tyr1214 and its downstream effectors Akt and ERK1/2, and importantly its association with b1 integrin. We propose a mechanism for the involvement of matrix-bound VEGFA in angiogenesis that is dependent on extracellular TG2-related activity. © 2013 Macmillan Publishers Limited. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gram-positive bacterial cell wall components including PGN (peptidoglycan) elicit a potent pro-inflammatory response in diverse cell types, including endothelial cells, by activating TLR2 (Toll-like receptor 2) signalling. The functional integrity of the endothelium is under the influence of a network of gap junction intercellular communication channels composed of Cxs (connexins) that also form hemichannels, signalling conduits that are implicated in ATP release and purinergic signalling. PGN modulates Cx expression in a variety of cell types, yet effects in endothelial cells remain unresolved. Using the endothelial cell line b.End5, a 6 h challenge with PGN induced IL-6 (interleukin 6), TLR2 and Cx43 mRNA expression that was associated with enhanced Cx43 protein expression and gap junction coupling. Cx43 hemichannel activity, measured by ATP release from the cells, was induced following 15 min of exposure to PGN. Inhibition of hemichannel activity with carbenoxolone or apyrase prevented induction of IL-6 and TLR2 mRNA expression by PGN, but had no effect on Cx43 mRNA expression levels. In contrast, knockdown of TLR2 expression had no effect on PGN-induced hemichannel activity, but reduced the level of TLR2 and Cx43 mRNA expression following 6 h of PGN challenge. PGN also acutely induced hemichannel activity in HeLa cells transfected to express Cx43, but had no effect in Cx43-deficient HeLa OHIO cells. All ATP responses were blocked with Cx-specific channel blockers. We conclude that acute Cx43 hemichannel signalling plays a role in the initiation of early innate immune responses in the endothelium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background - The negative feedback system is an important physiological regulatory mechanism controlling angiogenesis. Soluble vascular endothelial growth factor (VEGF) receptor-1 (sFlt-1), acts as a potent endogenous soluble inhibitor of VEGF- and placenta growth factor (PlGF)-mediated biological function and can also form dominant-negative complexes with competent full-length VEGF receptors. Methods and results - Systemic overexpression of VEGF-A in mice resulted in significantly elevated circulating sFlt-1. In addition, stimulation of human umbilical vein endothelial cells (HUVEC) with VEGF-A, induced a five-fold increase in sFlt-1 mRNA, a time-dependent significant increase in the release of sFlt-1 into the culture medium and activation of the flt-1 gene promoter. This response was dependent on VEGF receptor-2 (VEGFR-2) and phosphoinositide-3'-kinase signalling. siRNA-mediated knockdown of sFlt-1 in HUVEC stimulated the activation of endothelial nitric oxide synthase, increased basal and VEGF-induced cell migration and enhanced endothelial tube formation on growth factor reduced Matrigel. In contrast, adenoviral overexpression of sFlt-1 suppressed phosphorylation of VEGFR-2 at tyrosine 951 and ERK-1/-2 MAPK and reduced HUVEC proliferation. Preeclampsia is associated with elevated placental and systemic sFlt-1. Phosphorylation of VEGFR-2 tyrosine 951 was greatly reduced in placenta from preeclamptic patients compared to gestationally-matched normal placenta. Conclusion - These results show that endothelial sFlt-1 expression is regulated by VEGF and acts as an autocrine regulator of endothelial cell function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: Delayed graft revascularization impedes the success of human islet transplantation. This study utilized rotational co-culture of insulin secreting ß-cells with human umbilical vein endothelial cells (HUVECs) and a peroxisome proliferator-activated receptor gamma (PPAR-?) agonist to promote insulin and vascular endothelial growth factor (VEGF) secretory function. Methods: Clonal BRIN-BD11 (D11) cells were maintained in static culture (SC) and rotational culture (RC) ± HUVEC and ± the TZD (thiazolidinedione) rosiglitazone (10 mmol/l) as a specific PPAR-? agonist. HUVECs were cultured in SC and RC ± D11 and ± TZD. D11 insulin secretion was induced by static incubation with low glucose (1.67 mmol/l), high glucose (16.7 mmol/l) and high glucose with 10 mmol/l theophylline (G+T) and assessed by enzyme-linked immunosorbent assay (ELISA). HUVEC proliferation was determined by ATP luminescence, whereas VEGF secretion was quantified by ELISA. Co-cultured cells were characterized by immunostaining for insulin and CD31. Results: D11 SC and RC showed enhanced insulin secretion in response to 16.7 mmol/l and G+T (p <0.01); without significant alteration by the TZD. Co-culture with HUVEC in SC and RC also increased D11 insulin secretion when challenged with 16.7 mmol/l and G+T (p <0.01), and this was slightly enhanced by the TZD. The presence of HUVEC increased D11 SC and RC insulin secretion in response to high glucose and G+T, respectively (p <0.01). Addition of the TZD increased SC and RC HUVEC ATP content (p <0.01) and VEGF production (p <0.01) in the presence and absence of D11 cells. Conclusions: Rotational co-culture of insulin secreting cells with endothelial cells, and exposure to a PPAR-? agonist may improve the prospects for graft revascularization and function after implantation. © 2011 Blackwell Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human islet transplant success is partially impaired by slow revascularisation. Our study investigated the potential for rotational cell culture (RC) of human islets combined with thiazolidinedione (TZD) stimulation of peroxisome proliferator-activated receptor gamma (PPAR?) to upregulate vascular endothelial growth factor (VEGF) expression in the islets. Four groups of human islets were studied: static culture (SC) with and without 25 mmol/L TZD and RC with and without 25 mmol/L TZD. These were assessed for insulin secretion and soluble VEGF-A release. Both proteins were quantified by enzyme-linked immunosorbent assay (ELISA), supported with qualitative immunofluorescence staining. RC + TZD increased insulin secretion by >20% (p <0.05-0.001) in response to 16.7 mmol/L glucose and 16.7 mmol/L glucose + 10 mmol/L theophylline (G + T). This effect was seen at all time intervals compared with SC and without addition of TZD. Soluble VEGF-A release was significantly augmented by RC and TZD exposure with an increased effect of >30% (p <0.001) at 72 h under both SC and RC conditions. RC supplemented with a TZD enhances and prolongs the release of insulin and soluble VEGF-A by isolated human islets. © 2013 The Author(s).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the pathological hallmarks of Alzheimer's disease (AD) brain is extracellular β-amyloid (Aβ) plaques containing 39-42 amino acid Aβ peptides. The deposition of Aβ around blood vessels, known as Cerebral amyloid angiopathy (CAA), is also a common feature in AD brain. Vascular density and cerebral blood flow are reduced in AD brains, and vascular risk factors such as hypertension and diabetes are also risk factors for AD. We have shown previously that Aβ peptides can potently inhibit angiogenesis both in-vitro and in-vivo, but the mechanism of action for this effect is not known. Therefore, my first hypothesis was that particular amino acid sequence(s) within the Aβ peptide are required for inhibition of angiogenesis. From this aim, I found a peptide sequence which was critical for anti-angiogenic activity (HHQKLVFF). This sequence contains a heparan sulfate proteoglycan growth factor binding domain implying that Aβ can interfere with growth factor signaling. Leading on from this, my second hypothesis was that Aβ can inhibit angiogenesis by binding to growth factor receptors. I found that Aβ can bind to Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2), and showed that this is one mechanism by which Aβ can inhibit angiogenesis. Since the vasculature is disrupted in AD brains, I investigated whether a strategy to increase brain vascularization would be beneficial against AD pathology. Therefore, my third hypothesis was that voluntary exercise (which is known to increase brain vascularization in rodents) can ameliorate Aβ pathology, increase brain vascularization, and improve behavioral deficits in a transgenic mouse model of AD. I found that exercise has no effect on Aβ pathology, brain vascularization or behavioral deficits. Therefore, in the transgenic mouse model that I used, exercise is an ineffective therapeutic strategy against AD pathology and symptoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammatory breast cancer (IBC) is the deadliest, distinct subtype of breast cancer. High expression of epidermal growth factor receptors [EGFR or human epidermal growth factor receptor 2 (HER2)] in IBC tumors has prompted trials of anti-EGFR/HER2 monoclonal antibodies to inhibit oncogenic signaling; however, de novo and acquired therapeutic resistance is common. Another critical function of these antibodies is to mediate antibody-dependent cellular cytotoxicity (ADCC), which enables immune effector cells to engage tumors and deliver granzymes, activating executioner caspases. We hypothesized that high expression of anti-apoptotic molecules in tumors would render them resistant to ADCC. Herein, we demonstrate that the most potent caspase inhibitor, X-linked inhibitor of apoptosis protein (XIAP), overexpressed in IBC, drives resistance to ADCC mediated by cetuximab (anti-EGFR) and trastuzumab (anti-HER2). Overexpression of XIAP in parental IBC cell lines enhances resistance to ADCC; conversely, targeted downregulation of XIAP in ADCC-resistant IBC cells renders them sensitive. As hypothesized, this ADCC resistance is in part a result of the ability of XIAP to inhibit caspase activity; however, we also unexpectedly found that resistance was dependent on XIAP-mediated, caspase-independent suppression of reactive oxygen species (ROS) accumulation, which otherwise occurs during ADCC. Transcriptome analysis supported these observations by revealing modulation of genes involved in immunosuppression and oxidative stress response in XIAP-overexpressing, ADCC-resistant cells. We conclude that XIAP is a critical modulator of ADCC responsiveness, operating through both caspase-dependent and -independent mechanisms. These results suggest that strategies targeting the effects of XIAP on caspase activation and ROS suppression have the potential to enhance the activity of monoclonal antibody-based immunotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast and ovarian cancers are among the leading causes of cancer related deaths in women worldwide. In a subset of these cancers, dysregulation of the human epidermal growth factor receptor 2 (HER2) leads to overexpression of the receptor on the cell surface. Previous studies have found that these HER2+ cancers show high rates of progression to metastatic disease. Metastasis is driven by cytoskeletal rearrangements that produce filamentous actin (F-actin) based structures that penetrate and degrade extracellular matrix to facilitate tumour invasion. Advancements in targeted therapy have made F-actin an attractive target for the development of new cancer therapies. In this thesis, we tested the actin-depolymerizing macrolide toxin, Mycalolide B (MycB), as a potential warhead for a novel antibody drug conjugate (ADC) to target highly metastatic HER2+ breast and ovarian cancers. We found that MycB treatment of HER2+ breast (SKBR3, MDA-MB-453) and ovarian (SKOV3) cancer cells led to loss of viability (IC50 values ≤ 64 nM). Sub-lethal doses of MycB treatment caused potent suppression of leading edge protrusions, migration and invasion potential of HER2+ cancer cells (IC50 ≤ 32 nM). In contrast, other F-actin based processes such as receptor endocytosis were less sensitive to MycB treatment. MycB treatment skewed the size of endocytic vesicles, which may reflect defects in F-actin based vesicle motility or maturation. Given that HER2+ cancers have been effectively targeted by Trastuzumab and Trastuzumab-based ADCs, we tested the effects of a combination of Trastuzumab and MycB on cell migration and invasion. We found that MycB/ Trastuzumab combination treatments inhibited motility of SKOV3 cells to a greater degree than either treatment alone. Altogether, our results provide proof-of-principle that actin toxins such as MycB can be used as a novel class of warheads for ADCs to target and combat highly metastatic cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipoprotein-associated phospholipase A2 (Lp-PLA2) hydrolyses oxidized low-density lipoproteins into proinflammatory products, which can have detrimental effects on vascular function. As a specific inhibitor of Lp-PLA2, darapladib has been shown to be protective against atherogenesis and vascular leakage in diabetic and hypercholesterolemic animal models. This study has investigated whether Lp-PLA2 and its major enzymatic product, lysophosphatidylcholine (LPC), are involved in blood-retinal barrier (BRB) damage during diabetic retinopathy. We assessed BRB protection in diabetic rats through use of species-specific analogs of darapladib. Systemic Lp-PLA2 inhibition using SB-435495 at 10 mg/kg (i.p.) effectively suppressed BRB breakdown in streptozotocin-diabetic Brown Norway rats. This inhibitory effect was comparable to intravitreal VEGF neutralization, and the protection against BRB dysfunction was additive when both targets were inhibited simultaneously. Mechanistic studies in primary brain and retinal microvascular endothelial cells, as well as occluded rat pial microvessels, showed that luminal but not abluminal LPC potently induced permeability, and that this required signaling by the VEGF receptor 2 (VEGFR2). Taken together, this study demonstrates that Lp-PLA2 inhibition can effectively prevent diabetes-mediated BRB dysfunction and that LPC impacts on the retinal vascular endothelium to induce vasopermeability via VEGFR2. Thus, Lp-PLA2 may be a useful therapeutic target for patients with diabetic macular edema (DME), perhaps in combination with currently administered anti-VEGF agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For hepatic schistosomiasis the egg-induced granulomatous response and the development of extensive fibrosis are the main pathologies. We used a Schistosoma japonicum-infected mouse model to characterise the multi-cellular pathways associated with the recovery from hepatic fibrosis following clearance of the infection with the anti-schistosomal drug, praziquantel. In the recovering liver splenomegaly, granuloma density and liver fibrosis were all reduced. Inflammatory cell infiltration into the liver was evident, and the numbers of neutrophils, eosinophils and macrophages were significantly decreased. Transcriptomic analysis revealed the up-regulation of fatty acid metabolism genes and the identification of Peroxisome proliferator activated receptor alpha as the upstream regulator of liver recovery. The aryl hydrocarbon receptor signalling pathway which regulates xenobiotic metabolism was also differentially up-regulated. These findings provide a better understanding of the mechanisms associated with the regression of hepatic schistosomiasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinical outcome following chemotherapy for malignant pleural mesothelioma is poor and improvements are needed. This preclinical study investigates the effect of five tyrosine kinase inhibitors (PTK787, ZD6474, ZD1839, SU6668 and SU11248) on the growth of three mesothelioma cell lines (NCI H226, NCI H28 and MSTO 211H), the presence of growth factor receptors and inhibition of their downstream signalling pathways. GI50 values were determined: ZD6474 and SU11248, mainly VEGFR2 inhibitors, gave the lowest GI50 across all cell lines (3.5-6.9 microM) whereas ZD1839 gave a GI50 in this range only in H28 cells. All cell lines were positive for EGFR, but only H226 cells were positive for VEGFR2 by Western blotting. ZD6474 and ZD1839 inhibited EGF-induced phosphorylation of EGFR, AKT and ERK, whereas VEGF-induced phosphorylation of VEGFR2 was completely inhibited with 0.1 microM SU11248. VEGFR2 was detected in tumour samples by immunohistochemistry. VEGFR2 tyrosine kinase inhibitors warrant further investigation in mesothelioma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer’s disease (AD) is the sixth leading cause of death in the US. Some researchers refer to AD as “Type III Diabetes” because of reported glucose metabolism dysfunction. Preclinical studies suggest increasing insulin decreases AD pathology, although the mechanism remains unclear. To sensitize insulin signaling, this study activated Peroxisome Proliferator-Activated Receptor Gamma using intranasal co-administration of pioglitazone (PGZ) and insulin. This method targeted the site of action to reduce peripheral effects and to maximize impact in transgenic mice expressing AD pathology. Data from GC-MS fluxomics analysis suggested that PGZ+Insulin increased glucose metabolism in the brain. Immunohistochemistry with relevant antibodies was used to identify AD pathological markers in the subiculum, indicating that PGZ+Insulin decreased pathology compared to Insulin and Saline. This suggests that increasing glucose uptake in the brain alleviated AD pathology, further clarifying the role of insulin signaling in AD pathology.Gemstone

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulmonary arterial hypertension (PAH) is a progressive disease of the small pulmonary arteries, characterised by pulmonary vascular remodelling due to excessive proliferation and resistance to apoptosis of pulmonary artery endothelial cells (PAECs) and pulmonary artery smooth muscle cells (PASMCs). The increased pulmonary vascular resistance and elevated pulmonary artery pressures result in right heart failure and premature death. Germline mutations of the bone morphogenetic protein receptor-2 (bmpr2) gene, a receptor of the transforming growth factor beta (TGF-β) superfamily, account for approximately 75%-80% of the cases of heritable form of PAH (HPAH) and 20% of sporadic cases or idiopathic PAH (IPAH). IPAH patients without known bmpr2 mutations show reduced expression of BMPR2. However only ~ 20% of bmpr2-mutation carriers will develop the disease, due to an incomplete penetrance, thus the need for a ‘second hit’ including other genetic and/or environmental factors is accepted. Diagnosis of PAH occurs most frequently when patients have reached an advanced stage of disease. Although modern PAH therapies can markedly improve a patient’s symptoms and slow the rate of clinical deterioration, the mortality rate from PAH remains unacceptably high. Therefore, the development of novel therapeutic approaches is required for the treatment of this multifaceted disease. Noncoding RNAs (ncRNAs) include microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). MiRNAs are ~ 22 nucleotide long and act as negative regulators of gene ex-pression via degradation or translational inhibition of their target mRNAs. Previous studies showed extensive evidence for the role of miRNAs in the development of PAH. LncRNAs are transcribed RNA molecules greater than 200 nucleotides in length. Similar to classical mRNA, lncRNAs are translated by RNA polymerase II and are generally alternatively spliced and polyadenylated. LncRNAs are highly versatile and function to regulate gene expression by diverse mechanisms. Unlike miRNAs, which exhibit well-defined actions in negatively regulating gene expression via the 3’-UTR of mRNAs, lncRNAs play more diverse and unpredictable regulatory roles. Although a number of lncRNAs have been intensively investigated in the cancer field, studies of the role of lncRNAs in vascular diseases such as PAH are still at a very early stage. The aim of this study was to investigate the involvement of specific ncRNAs in the development of PAH using experimental animal models and cell culture. The first ncRNA we focused on was miR-143, which is up-regulated in the lung and right ventricle tissues of various animal models of PH, as well as in the lungs and PASMCs of PAH patients. We show that genetic ablation of miR-143 is protective against the development of chronic hypoxia induced PH in mice, assessed via measurement of right ventricular systolic pressure (RVSP), right ventricular hypertrophy (RVH) and pulmonary vascular remodelling. We further report that knockdown of miR-143-3p in WT mice via anti-miR-143-3p administration prior to exposure of mice to chronic hypoxia significantly decreases certain indices of PH (RVSP) although no significant changes in RVH and pulmo-nary vascular remodelling were observed. However, a reversal study using antimiR-143-3p treatment to modulate miR-143-3p demonstrated a protective effect on RVSP, RVH, and muscularisation of pulmonary arteries in the mouse chronic hypoxia induced PH model. In vitro experiments showed that miR-143-3p overexpression promotes PASMC migration and inhibits PASMC apoptosis, while knockdown miR-143-3p elicits the opposite effect, with no effects observed on cellular proliferation. Interestingly, miR-143-3p-enriched exosomes derived from PASMCs mediated cell-to-cell communication between PASMCs and PAECs, contributing to the pro-migratory and pro-angiogenic phenotype of PAECs that underlies the pathogenesis of PAH. Previous work has shown that miR-145-5p expression is upregulated in the chronic hypoxia induced mouse model of PH, as well as in PAH patients. Genetic ablation and pharmacological inhibition (subcutaneous injection) of miR-145-5p exert a protective against the de-velopment of PAH. In order to explore the potential for alternative, more lung targeted delivery strategies, miR-145-5p expression was inhibited in WT mice using intranasal-delivered antimiR-145-5p both prior to and post exposure to chronic hypoxia. The decreased expression of miR-145-5p in lung showed no beneficial effect on the development of PH compared with control antimiRNA treated mice exposed to chronic hypoxia. Thus, miR-143-3p modulated both cellular and exosome-mediated responses in pulmonary vascular cells, while the inhibition of miR-143-3p prevented the development of experimental pulmonary hypertension. We focused on two lncRNAs in this project: Myocardin-induced Smooth Muscle Long noncoding RNA, Inducer of Differentiation (MYOSLID) and non-annotated Myolnc16, which were identified from RNA sequencing studies in human coronary artery smooth muscle cells (HCASMCs) that overexpress myocardin. MYOSLID was significantly in-creased in PASMCs from patients with IPAH compared to healthy controls and increased in circulating endothelial progenitor cells (EPCs) from bmpr2 mutant PAH patients. Exposure of PASMCs to hypoxia in vitro led to a significant upregulation in MYOSLID expres-sion. MYOSLID expression was also induced by treatment of PASMC with BMP4, TGF-β and PDGF, which are known to be triggers of PAH in vitro. Small interfering RNA (siR-NA)-mediated knockdown MYOSLID inhibited migration and induced cell apoptosis without affecting cell proliferation and upregulated several genes in the BMP pathway in-cluding bmpr1α, bmpr2, id1, and id3. Modulation of MYOSLID also affected expression of BMPR2 at the protein level. In addition, MYOSLID knockdown affected the BMP-Smad and BMP-non-Smad signalling pathways in PASMCs assessed by phosphorylation of Smad1/5/9 and ERK1/2, respectively. In PAECs, MYOSLID expression was also induced by hypoxia exposure, VEGF and FGF2 treatment. In addition, MYOSLID knockdown sig-nificantly decreased the proliferation of PAECs. Thus, MYOSLID may be a novel modulator in pulmonary vascular cell functions, likely through the BMP-Smad and –non-Smad pathways. Treatment of PASMCs with inflammatory cytokines (IL-1 and TNF-α) significantly in-duced the expression of Myolnc16 at a very early time point. Knockdown of Myolnc16 in vitro decreased the expression of il-6, and upregulated the expression of il-1 and il-8 in PASMCs. Moreover, the expression levels of chemokines (cxcl1, cxcl6 and cxcl8) were sig-nificantly decreased with Myolnc16 knockdown. In addition, Myolnc16 knockdown decreased the MAP kinase signalling pathway assessed by phosphorylation of ERK1/2 and p38 MAPK and inhibited cell migration and proliferation in PASMCs. Thus, Myolnc16 may a novel modulator of PASMCs functions through anti-inflammatory signalling pathways. In summary, in this thesis we have demonstrated how miR-143-3p plays a protective role in the development of PH both in vivo animal models and patients, as well as in vitro cell cul-ture. Moreover, we have showed the role of two novel lncRNAs in pulmonary vascular cells. These ncRNAs represent potential novel therapeutic targets for the treatment of PAH with further work addressing to investigate the target genes, and the pathways modulated by these ncRNAs during the development of PAH.