674 resultados para primates
Resumo:
Theory of mind has been defined as the ability to attribute mental sates such as perceptions, knowledge, and belief to others. Studies examining theory of mind in primates have been the center of intense controversy. Much of the research on this subject has focused on designing methodologies to test a primate’s ability to discern the perceptions of others. Namely, many studies have examined an individual’s knowledge of what others can and cannot see. However, other sensory modalities have not undergone as much extensive research. This study aimed to replicate the methodology of a previous experiment with the addition of two novel experimental conditions. Individual long-tailed macaques (Macaca fascicularis) were allowed to approach one of two identical, lidded, clear boxes which had jingle bells attached to them. One of the boxes had the metal bits removed from inside of the jingle bells attached to it, thus creating one “silent” box and leaving the remaining one “noisy”. The experimenter either looked directly at the subject, down at the ground between their knees, or in the novel conditions, turned their back to the subject, or wore a welder’s mask while facing the subject after demonstrating each box’s auditory properties. It was predicted that subjects would choose to approach the silent container in the latter three conditions. The results indicated that subjects selected boxes at random in all conditions. Additionally, in order to explore the possibility of perspective-taking representing a derived trait in the genus Macaca, a phylogeny of the genus was created and annotated to display the presence of perspective-taking as a phenotypic trait in extant species. Three likely evolutionary scenarios leading to the current distribution of perspective-taking are postulated and analyzed for parsimony through the number of assumed gains and losses. The most parsimonious tree suggests that perspective taking could be a conserved trait among the order, giving credence to the argument that some other variable was responsible the negative results in this experiment. It is suggested that the results of the present study represent an artifact of the social environment of the subject population. Moreover, arguments are made for the development of more naturalistic studies for examining mental state attribution in primates.
Resumo:
Psychologists have studied self-recognition in human infants as an indication of self-knowledge (Amsterdam, 1972) and the development of abstract thought processes. Gallup (1970) modified the mark test used in human infant work to examine if nonhuman primates showed similar evidence of mirror self-recognition. Chimpanzees (Pan troglodytes) and orangutans (Pongo pygmnaeus) pass the mirror self-recognition test with limited mirror training or exposure. Other species of primates, such as gorillas and monkeys, have not passed the mirror test, despite extensive mirror exposure and training (Gallup, 1979). This project examined a gorilla (G. gorilla gorilla) named Otto in the traditional mark test. Using the modified mark-test, there were more incidents of touching the marked area while Otto was in front of the mirror than when he was not in front of the mirror. These results indicated that Otto was able to show some evidence of selfawareness.
Resumo:
The role of steroids hormones on the behavior of vertebrates have been described as organizational and activational effects. These actions occur in different periods of the ontogenetic development as fetal, early post natal and during puberty (organizational effect) or modifying the expression of behavioral patterns during time life (activational effects). Studies on brain lateralization in hand use in human and non-human primates have shown that sexual hormones seems to participate in the process of handedness strength that begins in the puberal period and is stabilized at the adult age. The aim of this study was to investigate in adult male Callithrix jacchus if the strength of use of the hand in common marmoset adult male is stable (organizational effect) or androgens variations could affect its stability (activational effect). The preferential use of one hand in 14 common marmoset (Callithrix jacchus was studied in two contexts: (1) spontaneous holding food and directing the food to mouth (feeding episodes), and (2) forced reaching food tests where the animal have to reach the food through a hole within a cover plate with a central hole that allow the use of one hand only to reach the food. The records were made during 5 sessions/20 bouts each during baseline totalizing 100 episodes before two treatments. Firstly it was used GnRH antagonist: a single subcutaneous injection of 100µg de Cetrotide – acetate of cetrorrelix (Baxter Oncology GmbH, Germany) (n=10). Secondly, a single GnRH injection of 0.2mg of GnRH (Sigma – Aldrich) (n= 8) was used. After injections 20 successful attempts of hand use episodes was recorded in the 1st , 2 nd, 7th, 15th and 30 th days, totalizing in the whole period 100 episodes for each context, after both treatments. Fecal sampling to measure extracted fecal androgens was performed in all days of data collection across the length of the basal and during the experimental periods. Statistical analysis by mixed model, Tukey test to compare mean values after the two treatments, and Levene test to compare mean variance were used, all for p-value < 0.05. In basal phase 6 animals used preferentially the right hand, 5 the left and 3 were ambidextrous. Mean handedness index in basal phase were different from that after both treatment starting at 7th day. Mean variance of handedness index for spontaneous and forced activities does not differs before and after both treatments but the mean values for GnRH index were higher than that observed for its antagonist. These findings suggested that androgens have an activational effect on handedness in adult male C. jacchus
Resumo:
Serotonin or 5-hydroxytryptamine (5-HT) is a substance found in many tissues of the body, including the nervous system acting as a neurotransmitter. Within the neuro-axis, the location of the majority of the 5-HT neurons is superimposed with raphe nuclei of the brain stem, in the median line or its vicinity, so that neuronal 5-HT can be considered a marker of the raphe nuclei. Serotonergic neurons are projected to almost all areas of the brain. Studies show the participation of serotonin in regulating the temperature, feeding behavior, sexual behavior, biological rhythms, sleep, locomotor function, learning, among others. The anatomy of these groups has been revised in many species, including mouse, rabbit, cat and primates, but never before in a bat species from South America. This study aimed to characterize the serotonergic clusters in the brain of the bat Artibeus planirostris through immunohistochemistry for serotonin. Seven adult bat males of Artibeus planirostris species (Microchiroptera, Mammalia) were used in this study. The animals were anesthetized, transcardially perfused and their brains were removed. Coronal sections of the frozen brain of bats were obtained in sliding microtome and subjected to immunohistochemistry for 5-HT. Delimit the caudal linear (CLi), dorsal (DR), median (MnR), paramedian (PMnR), pontine (PNR), magnus (MgR), pallidus (RPA) and obscurus (ROb) raphe nucleus, in addition to the groups B9 and rostral and caudal ventrolateral (RVL/CVL). The serotonergic groups of this kind of cheiroptera present morphology and cytoarchitecture relatively similar to that described in rodents and primates, confirming the phylogenetic stability of these cell clusters.
Resumo:
Genéticamente, los chimpancés y los bonobos son los parientes vivos más cercanos a los seres humanos, que comparten un ancestro común que vivió hace unos seis millones de años. Los chimpancés se consideran en peligro de extinción por la IUCN y numerosos programas de conservación en África trabajan hacia la protección de la especie y su hábitat. Amenazado por la caza furtiva y la destrucción del hábitat, las cifras de población de chimpancés salvajes siguen disminuyendo. Como consecuencia, un importante flujo de chimpancés en vivo que son víctimas de la caza furtiva son enviados a centros de rehabilitación en África donde viven en semilibertad y en ocasiones son reintroducidos en el medio natural. Un objetivo primordial en estos centros de rescate y rehabilitación es proporcionar a los primates en cautividad con altos estándares de bienestar. La realización de tratamientos médicos adecuados y una gestión cuidadosa contribuye a su buen estado de salud, que a su vez permite a estos centros para garantizar el bienestar óptimo chimpancé. A un nivel veterinaria, la implementación de un tratamiento rápido y efectivo para una enfermedad requiere las herramientas de diagnóstico adecuadas, así como los valores de referencia correctos correspondientes a la especie. El objetivo de la presente tesis es establecer rangos de referencia de los diferentes parámetros clínicos para el chimpancé común (Pan troglodytes), que viven en semi-libertad en su hábitat natural. A fin de establecer valores de referencia, hemos utilizado los datos obtenidos durante los controles de rutina del brezo en chimpancés realizados durante diez años, en Tchimpounga Centro de Rehabilitación de chimpancé. Todos los chimpancés en el Centro de Rehabilitación Tchimpounga someten a controles de salud a su llegada al centro y en adelante cada tres años. Los análisis se llevan a cabo para asegurar la buena salud de la comunidad, y mejorar el control de la transmisión de enfermedades infecciosas, como la tuberculosis. Los análisis incluyen la recogida de sangre de la muestra, electrocardiogramas, radiografías de tórax, ecografía abdominal y pruebas serológicas y bacteriológicas. Estos análisis requieren la inmovilización química del individuo. A su vez, otros controles de salud que no requieren inmovilización química se realizan a diario en el centro por personal cualificado. Estos incluyen el análisis de las heces y la orina, y la exploración física general. La exploración global incluye tomar la temperatura corporal diaria de los chimpancés menores de 10 años en virtud de condicionamiento positivo...
Resumo:
La leishmaniosis es una enfermedad parasitaria causada por protozoos hemoflagelados del genero Leishmania que se transmite al hombre y a otros vertebrados a través de la picadura de un díptero de la familia Plebotominae. Cuando un flebótomo infectado pica al hospedador vertebrado, perfora la piel con su probóscide buscando las vénulas de la dermis, las lacera y provoca un pequeño hematoma donde deposita los promastigotes. Tras el contacto con la sangre tiene lugar la activación del complemento y deposición del C3 en la superficie del parásito. En primates, los promastigotes opsonizados se unen a eritrocitos y posteriormente son transferidos a las células aceptoras de la sangre: los leucocitos...
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Seasonal heterothermy—an orchestrated set of extreme physiological responses—is directly responsible for the over-winter survival of many mammalian groups living in seasonal environments. Historically, it was thought that the use of seasonal heterothermy (i.e. daily torpor and hibernation) was restricted to cold-adapted species; it is now known that such thermoregulatory strategies are used by more species than previously appreciated, including many tropical species. The dwarf and mouse lemurs (family Cheirogaleidae) are among the few primates known to use seasonal heterothermy to avoid Madagascar’s harsh and unpredictable environments. These primates provide an ideal study system for investigating a common mechanism of mammalian seasonal heterothermy. The overarching theme of this dissertation is to understand both the intrinsic and extrinsic drivers of heterothermy in three species of the family Cheirogaleidae. By using transcriptome sequencing to characterize gene expression in both captive and natural settings, we identify unique patterns of differential gene expression that are correlated with extreme changes in physiology in two species of dwarf lemurs: C. medius under captive conditions at the Duke Lemur Center and C. crossleyi studied under field conditions in Madagascar. Genes that are differentially expressed appear to be critical for maintaining the health of these animals when they undergo prolonged periods of metabolic depression concurrent with the hibernation phenotype. Further, a comparative analysis of previously studied mammalian heterotherms identifies shared genetic mechanisms underlying the hibernation phenotype across the phylogeny of mammals. Lastly, conducting a diet manipulation study with a captive colony of mouse lemurs (Microcebus murinus) at the Duke Lemur Center, we investigated the degree to which dietary effects influence torpor patterns. We find that tropical primate heterotherms may be exempt from the traditional paradigms governing cold-adapted heterothermy, having evolved different dietary strategies to tolerate circadian changes in body temperature.
Resumo:
Making decisions is fundamental to everything we do, yet it can be impaired in various disorders and conditions. While research into the neural basis of decision-making has flourished in recent years, many questions remain about how decisions are instantiated in the brain. Here we explored how primates make abstract decisions and decisions in social contexts, as well as one way to non-invasively modulate the brain circuits underlying decision-making. We used rhesus macaques as our model organism. First we probed numerical decision-making, a form of abstract decision-making. We demonstrated that monkeys are able to compare discrete ratios, choosing an array with a greater ratio of positive to negative stimuli, even when this array does not have a greater absolute number of positive stimuli. Monkeys’ performance in this task adhered to Weber’s law, indicating that monkeys—like humans—treat proportions as analog magnitudes. Next we showed that monkeys’ ordinal decisions are influenced by spatial associations; when trained to select the fourth stimulus from the bottom in a vertical array, they subsequently selected the fourth stimulus from the left—and not from the right—in a horizontal array. In other words, they begin enumerating from one side of space and not the other, mirroring the human tendency to associate numbers with space. These and other studies confirmed that monkeys’ numerical decision-making follows similar patterns to that of humans, making them a good model for investigations of the neurobiological basis of numerical decision-making.
We sought to develop a system for exploring the neuronal basis of the cognitive and behavioral effects observed following transcranial magnetic stimulation, a relatively new, non-invasive method of brain stimulation that may be used to treat clinical disorders. We completed a set of pilot studies applying offline low-frequency repetitive transcranial magnetic stimulation to the macaque posterior parietal cortex, which has been implicated in numerical processing, while subjects performed a numerical comparison and control color comparison task, and while electrophysiological activity was recorded from the stimulated region of cortex. We found tentative evidence in one paradigm that stimulation did selectively impair performance in the number task, causally implicating the posterior parietal cortex in numerical decisions. In another paradigm, however, we manipulated the subject’s reaching behavior but not her number or color comparison performance. We also found that stimulation produced variable changes in neuronal firing and local field potentials. Together these findings lay the groundwork for detailed investigations into how different parameters of transcranial magnetic stimulation can interact with cortical architecture to produce various cognitive and behavioral changes.
Finally, we explored how monkeys decide how to behave in competitive social interactions. In a zero-sum computer game in which two monkeys played as a shooter or a goalie during a hockey-like “penalty shot” scenario, we found that shooters developed complex movement trajectories so as to conceal their intentions from the goalies. Additionally, we found that neurons in the dorsolateral and dorsomedial prefrontal cortex played a role in generating this “deceptive” behavior. We conclude that these regions of prefrontal cortex form part of a circuit that guides decisions to make an individual less predictable to an opponent.
Resumo:
Humans are natural politicians. We obsessively collect social information that is both observable (e.g., about third-party relationships) and unobservable (e.g., about others’ psychological states), and we strategically employ that information to manage our cooperative and competitive relationships. To what extent are these abilities unique to our species, and how did they evolve? The present dissertation seeks to contribute to these two questions. To do so, I take a comparative perspective, investigating social decision-making in humans’ closest living relatives, bonobos and chimpanzees. In Chapter 1, I review existing literature on theory of mind—or the ability to understand others’ psychological states—in these species. I also present a theoretical framework to guide further investigation of social cognition in bonobos and chimpanzees based on hypotheses about the proximate and ultimate origins of their species differences. In Chapter 2, I experimentally investigate differences in the prosocial behavior of bonobos and chimpanzees, revealing species-specific prosocial motivations that appear to be less flexible than those exhibited by humans. In Chapter 3, I explore through decision-making experiments bonobos’ ability to evaluate others based on their prosocial or antisocial behavior during third-party interactions. Bonobos do track the interactions of third-parties and evaluate actors based on these interactions. However, they do not exhibit the human preference for those who are prosocial towards others, instead consistently favoring an antisocial individual. The motivation to prefer those who demonstrate a prosocial disposition may be a unique feature of human psychology that contributes to our ultra-cooperative nature. In Chapter 4, I investigate the adaptive value of social cognition in wild primates. I show that the recruitment behavior of wild chimpanzees at Gombe National Park, Tanzania is consistent with the use of third-party knowledge, and that those who appear to use third-party knowledge receive immediate proximate benefits. They escape further aggression from their opponents. These findings directly support the social intelligence hypothesis that social cognition has evolved in response to the demands of competing with one’s own group-mates. Thus, the studies presented here help to better characterize the features of social decision-making that are unique to humans, and how these abilities evolved.
Resumo:
Chimpanzees are native only to the jungles of equatorial Africa, but for the last hundred years, they have also lived in captivity in the United States, most commonly in biomedical research laboratories, but also at Air Force bases for experiments for the space program, at accredited and unaccredited zoos, at circuses, as performers in Hollywood and even in private homes and backyards as pets. But that has been gradually evolving over the last few decades, as more and more chimpanzees move to newly-established chimpanzee sanctuaries. That transition was already underway even before the announcement by the National Institutes of Health (NIH) last year that it will retire all of its remaining chimpanzees from labs to sanctuaries. By thoroughly examining the evolution of these sanctuaries leading up to that seminal decision, along with the many challenges they face, including money, medical care, conflicting philosophies on the treatment of animals and the pitfalls that have led other sanctuaries to the brink of ruin, we can take away a better understanding of why chimpanzee sanctuaries are needed and why caretakers of other animal species are now looking to the chimpanzee sanctuary movement as a model to show how animals can be cared for in retirement.
Resumo:
© 2016 Springer Science+Business Media New YorkResearchers studying mammalian dentitions from functional and adaptive perspectives increasingly have moved towards using dental topography measures that can be estimated from 3D surface scans, which do not require identification of specific homologous landmarks. Here we present molaR, a new R package designed to assist researchers in calculating four commonly used topographic measures: Dirichlet Normal Energy (DNE), Relief Index (RFI), Orientation Patch Count (OPC), and Orientation Patch Count Rotated (OPCR) from surface scans of teeth, enabling a unified application of these informative new metrics. In addition to providing topographic measuring tools, molaR has complimentary plotting functions enabling highly customizable visualization of results. This article gives a detailed description of the DNE measure, walks researchers through installing, operating, and troubleshooting molaR and its functions, and gives an example of a simple comparison that measured teeth of the primates Alouatta and Pithecia in molaR and other available software packages. molaR is a free and open source software extension, which can be found at the doi:10.13140/RG.2.1.3563.4961(molaR v. 2.0) as well as on the Internet repository CRAN, which stores R packages.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Fossil associations from the middle and upper Eocene (Bartonian and Priabonian) sedimentary succession of the Pamplona Basin are described. This succession was accumulated in the western part of the South Pyrenean peripheral foreland basin and extends from deep-marine turbiditic (Ezkaba Sandstone Formation) to deltaic (Pamplona Marl, Ardanatz Sandstone and Ilundain Marl formations) and marginal marine deposits (Gendulain Formation). The micropalaeontological content is high. It is dominated by foraminifera, and common ostracods and other microfossils are also present. The fossil ichnoasssemblages include at least 23 ichnogenera and 28 ichnospecies indicative of Nereites, Cruziana, Glossifungites and ?Scoyenia-Mermia ichnofacies. Body macrofossils of 78 taxa corresponding to macroforaminifera, sponges, corals, bryozoans, brachiopods, annelids, molluscs, arthropods, echinoderms and vertebrates have been identified. Both the number of ichnotaxa and of species (e. g. bryozoans, molluscs and condrichthyans) may be considerably higher. Body fossil assemblages are comparable to those from the Eocene of the Nord Pyrenean area (Basque Coast), and also to those from the Eocene of the west-central and eastern part of South Pyrenean area (Aragon and Catalonia). At the European scale, the molluscs assemblages seem endemic from the Pyrenean area, although several Tethyan (Italy and Alps) and Northern elements (Paris basin and Normandy) have been recorded. Palaeontological data of studied sedimentary units fit well with the shallowing process that throughout the middle and late Eocene occurs in the area, according to the sedimentological and stratigraphical data.
Resumo:
The Early Miocene Napak XV locality (ca 20.5 Ma), Uganda, has yielded an interesting assemblage of fossils, including the very well represented amphicyonid Hecubides euryodon. The remarkable find of a nearly complete mandible, unfortunately with poorly preserved dentition, together with new dental remains allow us to obtain a better idea about the morphology and variability of this species. Additionally, we describe a newly discovered mandible of Hecubides euryodon from the Grillental-VI locality (Sperrgebiet, Namibia), which is the most complete and diagnostic Amphicyonidae material found in this area. Comparisons with Cynelos lemanensis from Saint Gérand le Pouy (France), the type locality, and with an updated sample of the species of amphicyonids described in Africa leads us to validate the genus Hecubides. Hecubides would be phylogenetically related to the medium and large size species of Amphicyonidae from Africa, most of them now grouped into the genera Afrocyon and Myacyon, both endemic to this continent.