952 resultados para phytochrome mRNA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elevated islet uncoupling protein-2 (UCP-2) impairs β-cell function and UCP-2 may be increased in clinical obesity and diabetes. We investigated the effects of glucose and leptin on UCP-2 expression in isolated human islets. Human islets were incubated for 24 h with glucose (5.5–22 mmol/l)±leptin (0–10 nmol/l). Some islet batches were incubated at high (22 mmol/l), and subsequently lower (5.5 mmol/l), glucose to assess reversibility of effects. Leptin effects on insulin release were also measured. Glucose dose-dependently increased UCP-2 expression in all islet batches, maximally by three-fold. This was not fully reversed by subsequently reduced glucose levels. Leptin decreased UCP-2 expression by up to 75%, and maximally inhibited insulin release by 47%, at 22 mmol/l glucose. This is the first report of UCP-2 expression in human islets and provides novel evidence of its role in the loss of β-cell function in diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoacoustic tomography (PAT) of genetically encoded probes allows for imaging of targeted biological processes deep in tissues with high spatial resolution; however, high background signals from blood can limit the achievable detection sensitivity. Here we describe a reversibly switchable nonfluorescent bacterial phytochrome for use in multiscale photoacoustic imaging, BphP1, with the most red-shifted absorption among genetically encoded probes. BphP1 binds a heme-derived biliverdin chromophore and is reversibly photoconvertible between red and near-infrared light-absorption states. We combined single-wavelength PAT with efficient BphP1 photoswitching, which enabled differential imaging with substantially decreased background signals, enhanced detection sensitivity, increased penetration depth and improved spatial resolution. We monitored tumor growth and metastasis with ∼ 100-μm resolution at depths approaching 10 mm using photoacoustic computed tomography, and we imaged individual cancer cells with a suboptical-diffraction resolution of ∼ 140 nm using photoacoustic microscopy. This technology is promising for biomedical studies at several scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective We examined whether feeding pregnant and lactating rats hydrogenated fats rich in trans-fatty acids modifies the plasma lipid profiles and the expression of adipokines involved with insulin resistance and cardiovascular disease in their 21-d-old offspring. Methods Pregnant and lactating Wistar rats were fed with a control diet (C group) or one enriched with hydrogenated vegetable fat (T group). After delivery, male offspring were weighed weekly and killed at day 21 of life by decapitation. Blood and retroperitoneal, epididymal, and subcutaneous white adipose tissues were collected. Results Offspring of T-group rats had increased serum triacylglycerols and cholesterol, white adipose tissue plasminogen activator inhibitor-1, and tumor necrosis factor-α gene expression, and carcass lipid content and decreased blood leptin and adiponectin and adiponectin gene expression. Conclusion Ingestion of hydrogenated vegetable fat by the mother during gestation and lactation alters the blood lipid profiles and the expression of proinflammatory adipokynes by the adipose tissue of offspring aged 21 d.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wydział Biologii: Instytut Biologii Molekularnej i Biotechnologii

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most cancer-related deaths are due to metastasis formation, the ability of cancer cells to break away from the primary tumor site, transmigrate through the endothelium, and form secondary tumors in distant areas. Many studies have identified links between the mechanical properties of the cellular microenvironment and the behavior of cancer cells. Cells may experience heterogeneous microenvironments of varying stiffness during tumor progression, transmigration, and invasion into the basement membrane. In addition to mechanical factors, the localization of RNAs to lamellipodial regions has been proposed to play an important part in metastasis. This dissertation provides a quantitative evaluation of the biophysical effects on cancer cell transmigration and RNA localization. In the first part of this dissertation, we sought to compare cancer cell and leukocyte transmigration and investigate the impact of matrix stiffness on transmigration process. We found that cancer cell transmigration includes an additional step, ‘incorporation’, into the endothelial cell (EC) monolayer. During this phase, cancer cells physically displace ECs and spread into the monolayer. Furthermore, the effects of subendothelial matrix stiffness and endothelial activation on cancer cell incorporation are cell-specific, a notable difference from the process by which leukocytes transmigrate. Collectively, our results provide mechanistic insights into tumor cell extravasation and demonstrate that incorporation into the endothelium is one of the earliest steps. In the next part of this work, we investigated how matrix stiffness impacts RNA localization and its relevance to cancer metastasis. In migrating cells, the tumor suppressor protein, adenomatous polyposis coli (APC) targets RNAs to cellular protrusions. We observed that increasing stiffness promotes the peripheral localization of these APC-dependent RNAs and that cellular contractility plays a role in regulating this pathway. We next investigated the mechanism underlying the effect of substrate stiffness and cellular contractility. We found that contractility drives localization of RNAs to protrusions through modulation of detyrosinated microtubules, a network of modified microtubules that associate with, and are required for localization of APC-dependent RNAs. These results raise the possibility that as the matrix environment becomes stiffer during tumor progression, it promotes the localization of RNAs and ultimately induces a metastatic phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The auxin receptor ABP1 directly regulates plasma membrane activities including the number of PIN-formed (PIN) proteins and auxin efflux transport. Red light (R) mediated by phytochromes regulates the steady-state level of ABP1 and auxin-inducible growth capacity in etiolated tissues but, until now, there has been no genetic proof that ABP1 and phytochrome regulation of elongation share a common mechanism for organ elongation. In far red (FR)-enriched light, hypocotyl lengths were larger in the abp1-5 and abp1/ABP1 mutants, but not in tir1-1, a null mutant of the TRANSPORT-INHIBITOR-RESPONSE1 auxin receptor. The polar auxin transport inhibitor naphthylphthalamic acid (NPA) decreased elongation in the low R: FR light-enriched white light (WL) condition more strongly than in the high red: FR light-enriched condition WL suggesting that auxin transport is an important condition for FR-induced elongation. The addition of NPA to hypocotyls grown in R-and FR-enriched light inhibited hypocotyl gravitropism to a greater extent in both abp1 mutants and in phyB-9 and phyA-211 than the wild-type hypocotyl, arguing for decreased phytochrome action in conjunction with auxin transport in abp1 mutants. Transcription of FR-enriched light-induced genes, including several genes regulated by auxin and shade, was reduced 3-5-fold in abp1-5 compared with Col and was very low in abp1/ABP1. In the phyB-9 mutant the expression of these reporter genes was 5-15-fold lower than in Col. In tir1-1 and the phyA-211 mutants shade-induced gene expression was greatly attenuated. Thus, ABP1 directly or indirectly participates in auxin and light signalling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity and Type 2 diabetes mellitus share a strong pro-inflammatory profile. It has been observed that iron is a risk factor in the development of type 2 diabetes. The aim of this study was to evaluate the relationship between iron nutritional status and inflammation with the risk of type 2 diabetes development in obese subjects. We studied 30 obese men with type 2 diabetes (OBDM); 30 obese subjects without diabetes (OB) and 30 healthy subjects (Cn). We isolated peripheral mononuclear cells (PMCs) and challenged them with high Fe concentrations. Total mRNA was isolated and relative abundance of TNF-αIL-6 and hepcidin were determined by qPCR. Iron status, biochemical, inflammatory and oxidative stress parameters were also characterized. OBDM and OB patients showed increased hsCRP levels compared to the Cn group. OBDM subjects showed higher levels of ferritin than the Cn group. TNF-α and IL-6 mRNA relative abundances were increased in OBDM PMCs treated with high/Fe. Hepcidin mRNA was increased with basal and high iron concentration. We found that the highest quartile of ferritin was associated with an increased risk of type 2 diabetes when it was adjusted to BMI and HOMA-IR; this association was independent of the inflammatory status. The highest level of hepcidin gene expression also showed a trend of increased risk of diabetes, however it was not significant. Levels of hsCRP over 2 mg/L showed a significant trend of increasing the risk of diabetes. In conclusion, iron may stimulate the expression of pro-inflammatory genes (TNF-α and IL-6), and both hepcidin and ferritin gene expression levels could be a risk factor for the development of type 2 diabetes. Subjects that have an increased cardiovascular risk also have a major risk to develop type 2 diabetes, which is independent of the BMI and insulin resistance state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The Grooved Carpet shell clam Ruditapes decussatus is the autochthonous European clam and the most appreciated from a gastronomic and economic point of view. The production is in decline due to several factors such as Perkinsiosis and habitat invasion and competition by the introduced exotic species, the manila clam Ruditapes philippinarum. After we sequenced R. decussatus transcriptome we have designed an oligo microarray capable of contributing to provide some clues on molecular response of the clam to Perkinsiosis. Results A database consisting of 41,119 unique transcripts was constructed, of which 12,479 (30.3%) were annotated by similarity. An oligo-DNA microarray platform was then designed and applied to profile gene expression in R. decussatus heavily infected by Perkinsus olseni. Functional annotation of differentially expressed genes between those two conditionswas performed by gene set enrichment analysis. As expected, microarrays unveil genes related with stress/infectious agents such as hydrolases, proteases and others. The extensive role of innate immune system was also analyzed and effect of parasitosis upon expression of important molecules such as lectins reviewed. Conclusions This study represents a first attempt to characterize Ruditapes decussatus transcriptome, an important marine resource for the European aquaculture. The trancriptome sequencing and consequent annotation will increase the available tools and resources for this specie, introducing the possibility of high throughput experiments such as microarrays analysis. In this specific case microarray approach was used to unveil some important aspects of host-parasite interaction between the Carpet shell clam and Perkinsus, two non-model species, highlighting some genes associated with this interaction. Ample information was obtained to identify biological processes significantly enriched among differentially expressed genes in Perkinsus infected versus non-infected gills. An overview on the genes related with the immune system on R. decussatus transcriptome is also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ribosome profiling (Ribo-seq), a promising technology for exploring ribosome decoding rates, is characterized by the presence of infrequent high peaks in ribosome footprint density and by long alignment gaps. Here, to reduce the impact of data heterogeneity we introduce a simple normalization method, Ribo-seq Unit Step Transformation (RUST). RUST is robust and outperforms other normalization techniques in the presence of heterogeneous noise. We illustrate how RUST can be used for identifying mRNA sequence features that affect ribosome footprint densities globally. We show that a few parameters extracted with RUST are sufficient for predicting experimental densities with high accuracy. Importantly the application of RUST to 30 publicly available Ribo-seq data sets revealed a substantial variation in sequence determinants of ribosome footprint frequencies, questioning the reliability of Ribo-seq as an accurate representation of local ribosome densities without prior quality control. This emphasizes our incomplete understanding of how protocol parameters affect ribosome footprint densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The expression of a gene from transcription of the DNA into pre-messenger RNA (pre-mRNA) over translation of messenger RNA (mRNA) into protein is constantly monitored for errors. This quality control is necessary to guarantee successful gene expression. One quality control mechanism important to this thesis is called nonsense-mediated mRNA decay (NMD). NMD is a cellular process that eliminates mRNA transcripts harboring premature translation termination codons (PTCs). Furthermore, NMD is known to regulate certain transcripts with long 3′ UTRs. However, some mRNA transcripts are known to evade NMD. The mechanism of NMD activation has been subjected to many studies whereas NMD evasion or suppression still remains rather elusive. It has previously been shown that the cytoplasmic poly(A)-binding protein (PABPC1) is able to suppress NMD of certain transcripts. In this study I show that PABPC1 is able to suppress NMD of a long 3′ UTR-carrying reporter when tethered immediately downstream of the termination codon. I further am able to show the importance of the interaction between PABPC1 and eIF4G for NMD suppression, whereas the interaction between PABPC1 and eRF3a seems dispensable. These results indicate an involvement of efficient translation termination and potentially ribosome recycling in NMD suppression. I am able to show that if PABPC1 is too far removed from the terminating ribosome NMD is activated. After showing the importance of PABPC1 recruitment directly downstream of a terminating ribosome in NMD suppression, I am further able to demonstrate several different methods by which PABPC1 can be recruited. Fold-back of the poly(A)-tail mediated by two interacting proteins on opposite ends of a 3′ UTR manages to bring PABPC1 bound to the poly(A)-tail into close proximity of the terminating ribosome and therefore suppress NMD. Furthermore, small PAM2 peptides that are known to interact with the MLLE domain of PABPC1 are able to strongly suppress NMD initiated by either a long 3′ UTR or an EJC. I am also able to show the NMD antagonizing power of recruited PABPC1 for the known endogenous NMD target β-globin PTC39, which is responsible for the disease β-thalassemia. This shows the potential medical implications and application of suppressing NMD by recruiting PABPC1 into close proximity of a terminating ribosome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The myogenic differentiation 1 gene (MYOD1) has a key role in skeletal muscle differentiation and composition through its regulation of the expression of several muscle-specific genes. We first used a general linear mixed model approach to evaluate the association of MYOD1 expression levels on individual beef tenderness phenotypes. MYOD1 mRNA levels measured by quantitative polymerase chain reactions in 136 Nelore steers were significantly associated (P ? 0.01) with Warner?Bratzler shear force, measured on the longissimus dorsi muscle after 7 and 14 days of beef aging. Transcript abundance for the muscle regulatory gene MYOD1 was lower in animals with more tender beef. We also performed a coexpression network analysis using whole transcriptome sequence data generated from 30 samples of longissimus muscle tissue to identify genes that are potentially regulated by MYOD1. The effect of MYOD1 gene expression on beef tenderness may emerge from its function as an activator of muscle-specific gene transcription such as for the serum response factor (C-fos serum response element-binding transcription factor) gene (SRF), which determines muscle tissue development, composition, growth and maturation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elevated expression of tumour necrosis factora (TNF-a) is associated with adverse pregnancy outcome. This study has examined the expression of TNF-a and its receptors (TNF-Rs) by mouse blastocysts and blastocyst outgrowths from day 4 to 9.5 of pregnancy and investigated the effects of elevated TNF-a on the inner cell mass (ICM) and trophoblast cells of blastocyst outgrowths. RTPCR demonstrated TNF-a mRNA expression from day 7.5 to 9.5, TNF-R1 from day 6.5 to 9.5 and TNF-R2 from day 5.5 to 7.5 of pregnancy, and in situ hybridisation revealed the trophoblast giant cells (TGCs) of the early placenta as the site of TNF-a expression. Day 4 blastocysts were cultured in a physiologically high concentration of TNF-a (100 ng/ml) for 72 h to the outgrowth stage and then compared to blastocysts cultured in media alone. TNF-a-treated blastocyst outgrowths exhibited a significant reduction in ICM cells (mean € SD 23.90€10.42 vs 9.37€7.45, t-test, P<0.0001) with no significant change in the numbers of trophoblast cells (19.97€8.14 vs 21.73€7.79, t-test, P=0.39). Within the trophoblast cell population, the TNF-a-treated outgrowths exhibited a significant increase in multinucleated cells (14.10€5.53 vs 6.37€5.80, t-test, P<0.0001) and a corresponding significant decrease in mononucleated cells (5.87€3.60 vs 15.37€5.87, t-test, P<0.0001). In summary, this study describes the expression of TNF-a and its receptors during the peri-implantation period in the mouse. It also reports that elevated TNF-a restricts ICM proliferation in the blastocyst and changes the ratio of mononucleated to multinucleated trophoblast cells. These findings suggest a mechanism by which increased

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tissue kallikreins are serine proteases encoded by highly conserved multigene families. The rodent kallikrein (KLK) families are particularly large, consisting of 13 26 genes clustered in one chromosomal locus. It has been recently recognised that the human KLK gene family is of a similar size (15 genes) with the identification of another 12 related genes (KLK4-KLK15) within and adjacent to the original human KLK locus (KLK1-3) on chromosome 19q13.4. The structural organisation and size of these new genes is similar to that of other KLK genes except for additional exons encoding 5 or 3 untranslated regions. Moreover, many of these genes have multiple mRNA transcripts, a trait not observed with rodent genes. Unlike all other kallikreins, the KLK4-KLK15 encoded proteases are less related (25–44%) and do not contain a conventional kallikrein loop. Clusters of genes exhibit high prostatic (KLK2-4, KLK15) or pancreatic (KLK6-13) expression, suggesting evolutionary conservation of elements conferring tissue specificity. These genes are also expressed, to varying degrees, in a wider range of tissues suggesting a functional involvement of these newer human kallikrein proteases in a diverse range of physiological processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work is concerned with the genetic basis of normal human pigmentation variation. Specifically, the role of polymorphisms within the solute carrier family 45 member 2 (SLC45A2 or membrane associated transporter protein; MATP) gene were investigated with respect to variation in hair, skin and eye colour ― both between and within populations. SLC45A2 is an important regulator of melanin production and mutations in the gene underly the most recently identified form of oculocutaneous albinism. There is evidence to suggest that non-synonymous polymorphisms in SLC45A2 are associated with normal pigmentation variation between populations. Therefore, the underlying hypothesis of this thesis is that polymorphisms in SLC45A2 will alter the function or regulation of the protein, thereby altering the important role it plays in melanogenesis and providing a mechanism for normal pigmentation variation. In order to investigate the role that SLC45A2 polymorphisms play in human pigmentation variation, a DNA database was established which collected pigmentation phenotypic information and blood samples of more than 700 individuals. This database was used as the foundation for two association studies outlined in this thesis, the first of which involved genotyping two previously-described non-synonymous polymorphisms, p.Glu272Lys and p.Phe374Leu, in four different population groups. For both polymorphisms, allele frequencies were significantly different between population groups and the 272Lys and 374Leu alleles were strongly associated with black hair, brown eyes and olive skin colour in Caucasians. This was the first report to show that SLC45A2 polymorphisms were associated with normal human intra-population pigmentation variation. The second association study involved genotyping several SLC45A2 promoter polymorphisms to determine if they also played a role in pigmentation variation. Firstly, the transcription start site (TSS), and hence putative proximal promoter region, was identified using 5' RNA ligase mediated rapid amplification of cDNA ends (RLM-RACE). Two alternate TSSs were identified and the putative promoter region was screened for novel polymorphisms using denaturing high performance liquid chromatography (dHPLC). A novel duplication (c.–1176_–1174dupAAT) was identified along with other previously described single nucleotide polymorphisms (c.–1721C>G and c.–1169G>A). Strong linkage disequilibrium ensured that all three polymorphisms were associated with skin colour such that the –1721G, +dup and –1169A alleles were associated with olive skin in Caucasians. No linkage disequilibrium was observed between the promoter and coding region polymorphisms, suggesting independent effects. The association analyses were complemented with functional data, showing that the –1721G, +dup and –1169A alleles significantly decreased SLC45A2 transcriptional activity. Based on in silico bioinformatic analysis that showed these alleles remove a microphthalmia-associated transcription factor (MITF) binding site, and that MITF is a known regulator of SLC45A2 (Baxter and Pavan, 2002; Du and Fisher, 2002), it was postulated that SLC45A2 promoter polymorphisms could contribute to the regulation of pigmentation by altering MITF binding affinity. Further characterisation of the SLC45A2 promoter was carried out using luciferase reporter assays to determine the transcriptional activity of different regions of the promoter. Five constructs were designed of increasing length and their promoter activity evaluated. Constitutive promoter activity was observed within the first ~200 bp and promoter activity increased as the construct size increased. The functional impact of the –1721G, +dup and –1169A alleles, which removed a MITF consensus binding site, were assessed using electrophoretic mobility shift assays (EMSA) and expression analysis of genotyped melanoblast and melanocyte cell lines. EMSA results confirmed that the promoter polymorphisms affected DNA-protein binding. Interestingly, however, the protein/s involved were not MITF, or at least MITF was not the protein directly binding to the DNA. In an effort to more thoroughly characterise the functional consequences of SLC45A2 promoter polymorphisms, the mRNA expression levels of SLC45A2 and MITF were determined in melanocyte/melanoblast cell lines. Based on SLC45A2’s role in processing and trafficking TYRP1 from the trans-Golgi network to stage 2 melanosmes, the mRNA expression of TYRP1 was also investigated. Expression results suggested a coordinated expression of pigmentation genes. This thesis has substantially contributed to the field of pigmentation by showing that SLC45A2 polymorphisms not only show allele frequency differences between population groups, but also contribute to normal pigmentation variation within a Caucasian population. In addition, promoter polymorphisms have been shown to have functional consequences for SLC45A2 transcription and the expression of other pigmentation genes. Combined, the data presented in this work supports the notion that SLC45A2 is an important contributor to normal pigmentation variation and should be the target of further research to elucidate its role in determining pigmentation phenotypes. Understanding SLC45A2’s function may lead to the development of therapeutic interventions for oculocutaneous albinism and other disorders of pigmentation. It may also help in our understanding of skin cancer susceptibility and evolutionary adaptation to different UV environments, and contribute to the forensic application of pigmentation phenotype prediction.