865 resultados para panel unit root
Resumo:
GaAs epilayer films on Si substrates grown by molecular-beam epitaxy were investigated by the x-ray double-crystal diffraction method. The rocking curves were recorded for different diffraction vectors of samples. The results show that the unit-cell volumes of GaAs epilayers are smaller than that of the GaAs bulk material. The strained-layer superlattice buffer layer can improve the quality of the film, especially in the surface lamella. The parameter W' = W(expt)/(square-root \gamma-h\/gamma-0/sin 2-theta-B) is introduced to describe the quality of different depths of epilayers. As the x-ray incident angle is increased, W' also increases, that is, the quality of the film deteriorates with increasing penetration distance of the x-ray beam. Therefore, W' can be considered as a parameter that describes the degree of perfection of the epilayer along the depth below the surface. The cross-section transmission electron microscopy observations agree with the results of x-ray double-crystal diffraction.
Resumo:
Hybrid opto-digital joint transform correlator (HODJTC) is effective for image motion measurement, but it is different from the traditional joint transform correlator because it only has one optical transform and the joint power spectrum is directly input into a digital processing unit to compute the image shift. The local cross-correlation image can be directly obtained by adopting a local Fourier transform operator. After the pixel-level location of cross-correlation peak is initially obtained, the up-sampling technique is introduced to relocate the peak in even higher accuracy. With signal-to-noise ratio >= 20 dB, up-sampling factor k >= 10 and the maximum image shift <= 60 pixels, the root-mean-square error of motion measurement accuracy can be controlled below 0.05 pixels.
Resumo:
The interpenetrating network structure provides an interesting avenue to novel materials. Locally resonant phononic crystal (LRPC) exhibits excellent sound attenuation performance based on the periodical arrangement of sound wave scatters. Combining the LRPC concept and interpenetrating network glassy structure, this paper has developed a new material which can achieve a wide band underwater strong acoustic absorption. Underwater absorption coefficients of different samples were measured by the pulse tube. Measurement results show that the new material possesses excellent underwater acoustic effects in a wide frequency range. Moreover, in order to investigate impacts of locally resonant units, some defects are introduced into the sample. The experimental result and the theoretical calculation both show that locally resonant units being connected to a network structure play an important role in achieving a wide band strong acoustic absorption.
Resumo:
A design and optimization procedure developed and used for a propeller installed on a twin-semitunnel-hull ship navigating in very shallow and icy water under heavy load conditions is presented. The base propeller for this vessel was first determined using classic design routines under open-water condition with existing model test data. In the optimization process, a panel method code (PROPELLA) was used to vary the pitch values and distributions and take into account the inflow wake distribution, tunnel gap, and cavitation effects. The optimized propeller was able to improve a ship speed of 0.02 knots higher than the desired speed and 0.06 knots higher than the classic B-series propeller. The analysis of the effect of inflow wake, hull tunnel, cavitation, and blade rake angle on propulsive performance is the focus of this paper.