991 resultados para oxidative processes
Resumo:
Only a small percentage of neurodegenerative diseases like Alzheimer's disease and Parkinson's disease is directly related to familial forms. The etiology of the most abundant, sporadic forms seems to involve both genetic and environmental factors. Environmental compounds are now extensively studied for their possible contribution to neurodegeneration. Chemicals were found which were able to reproduce symptoms of known neurodegenerative diseases, others may either predispose to the onset of neurodegeneration, or exacerbate distinct pathogenic processes of these diseases. In any case, in vitro studies performed with models presenting various degrees of complexity have shown that many environmental compounds have the potential to cause neurodegeneration, through a variety of pathways similar to those described in neurodegenerative diseases. Since the population is exposed to a huge number of potentially neurotoxic compounds, there is an important need for rapid and efficient procedures for hazard evaluation. Xenobiotics elicit a cascade of reactions that, most of the time, involve numerous interactions between the different brain cell types. A reliable in vitro model for the detection of environmental toxins potentially at risk for neurodegenerative diseases should therefore allow maximal cell-cell interactions and multiparametric endpoints determination. The combined use of in vitro models and new analytical approaches using "omics" technologies should help to map toxicity pathways, and advance our understanding of the possible role of xenobiotics in the etiology of neurodegenerative diseases.
Resumo:
Deeply incised river networks are generally regarded as robust features that are not easily modified by erosion or tectonics. Although the reorganization of deeply incised drainage systems has been documented, the corresponding importance with regard to the overall landscape evolution of mountain ranges and the factors that permit such reorganizations are poorly understood. To address this problem, we have explored the rapid drainage reorganization that affected the Cahabon River in Guatemala during the Quaternary. Sediment-provenance analysis, field mapping, and electrical resistivity tomography (ERT) imaging are used to reconstruct the geometry of the valley before the river was captured. Dating of the abandoned valley sediments by the Be-10-Al-26 burial method and geomagnetic polarity analysis allow us to determine the age of the capture events and then to quantify several processes, such as the rate of tectonic deformation of the paleovalley, the rate of propagation of post-capture drainage reversal, and the rate at which canyons that formed at the capture sites have propagated along the paleovalley. Transtensional faulting started 1 to 3 million years ago, produced ground tilting and ground faulting along the Cahabon River, and thus generated differential uplift rate of 0.3 +/- 0.1 up to 0.7 +/- 0.4 mm . y(-1) along the river's course. The river responded to faulting by incising the areas of relative uplift and depositing a few tens of meters of sediment above the areas of relative subsidence. Then, the river experienced two captures and one avulsion between 700 ky and 100 ky. The captures breached high-standing ridges that separate the Cahabon River from its captors. Captures occurred at specific points where ridges are made permeable by fault damage zones and/or soluble rocks. Groundwater flow from the Cahabon River down to its captors likely increased the erosive power of the captors thus promoting focused erosion of the ridges. Valley-fill formation and capture occurred in close temporal succession, suggesting a genetic link between the two. We suggest that the aquifers accumulated within the valley-fills, increased the head along the subterraneous system connecting the Cahabon River to its captors, and promoted their development. Upon capture, the breached valley experienced widespread drainage reversal toward the capture sites. We attribute the generalized reversal to combined effects of groundwater sapping in the valley-fill, axial drainage obstruction by lateral fans, and tectonic tilting. Drainage reversal increased the size of the captured areas by a factor of 4 to 6. At the capture sites, 500 m deep canyons have been incised into the bedrock and are propagating upstream at a rate of 3 to 11 mm . y(-1) deepening at a rate of 0.7 to 1 5 mm . y(-1). At this rate, 1 to 2 million years will be necessary for headward erosion to completely erase the topographic expression of the paleovalley. It is concluded that the rapid reorganization of this drainage system was made possible by the way the river adjusted to the new tectonic strain field, which involved transient sedimentation along the river's course. If the river had escaped its early reorganization and had been given the time necessary to reach a new dynamic equilibrium, then the transient conditions that promoted capture would have vanished and its vulnerability to capture would have been strongly reduced.
Resumo:
Erythrocyte concentrates (ECs) are the major labile blood product being transfused worldwide, aiming at curing anemia of diverse origins. In Switzerland, ECs are stored at 4 °C up to 42 days in saline-adenine-glucose-mannitol (SAGM). Such storage induces cellular lesions, altering red blood cells (RBCs) metabolism, protein content and rheological properties. A hot debate exists regarding the impact of the storage lesions, thus the age of ECs on transfusion-related clinical adverse outcomes. Several studies tend to show that poorer outcomes occur in patients receiving older blood products. However, no clear association was demonstrated up to date. While metabolism and early rheological changes are reversible through transfusion of the blood units, oxidized proteins cannot be repaired, and it is likely such irreversible damages would affect the quality of the blood product and the efficiency of the transfusion. In vivo, RBCs are constantly exposed to oxygen fluxes, and are thus well equipped to deal with oxidative challenges. Moreover, functional 20S proteasome complexes allow for recognition and proteolysis of fairly oxidized protein, and some proteins can be eliminated from RBCs by the release of microvesicles. The present PhD thesis is involved in a global research project which goal is to characterize the effect of processing and storage on the quality of ECs. Assessing protein oxidative damages during RBC storage is of major importance to understand the mechanisms of aging of stored RBCs. To this purpose, redox proteomic-based investigations were conducted here. In a first part, cysteine oxidation and protein carbonylation were addressed via 2D-DIGE and derivatization-driven immunodetection approaches, respectively. Then, the oxidized sub- proteomes were characterized through LC-MS/MS identification of proteins in spots of interest (cysteine oxidation) or affinity-purified carbonylated proteins. Gene ontology annotation allowed classifying targets of oxidation according to their molecular functions. In a third part, the P20S activity was evaluated throughout the storage period of ECs, and its susceptibility to highly oxidized environment was investigated. The potential defensive role of microvesiculation was also addressed through the quantification of eliminated carbonylated proteins. We highlighted distinct protein groups differentially affected by cysteine oxidation, either reversibly or irreversibly. In addition, soluble extracts showed a decrease in carbonylation at the beginning of the storage and membrane extracts revealed increasing carbonylation after 4 weeks of storage. Engaged molecular functions revealed that antioxidant (AO) are rather reversibly oxidized at their cysteine residue(s), but are irreversibly oxidized through carbonylation. In the meantime, the 20S proteasome activity is decreased by around 40 % at the end of the storage period. Incubation of fresh RBCs extracts with exogenous oxidized proteins showed a dose-dependent and protein-dependent inhibitory effect. Finally, we proved that the release of microvesicles allows the elimination of increasing quantities of carbonylated proteins. Taken together, these results revealed an oxidative pathway model of RBCs storage, on which further investigation towards improved storage conditions will be based. -- Les concentrés érythrocytaires (CE) sont le produit sanguin le plus délivré au monde, permettant de traiter différentes formes d'anémies. En Suisse, les CE sont stocké à 4 °C pendant 42 jours dans une solution saline d'adénine, glucose et mannitol (SAGM). Une telle conservation induit des lésions de stockage qui altèrent le métabolisme, les protéines et les propriétés rhéologique du globule rouge (GR). Un débat important concerne l'impact du temps de stockage des CE sur les risques de réaction transfusionnelles, certaines études tentant de démontrer que des transfusions de sang vieux réduiraient l'espérance de vie des patients. Cependant, aucune association concrète n'a été prouvée à ce jour. Alors que les modifications du métabolisme et changement précoces des propriétés rhéologiques sont réversibles suite à la transfusion du CE, les protéines oxydées ne peuvent être réparées, et il est probable que de telles lésions affectent la qualité et l'efficacité des produits sanguins. In vivo, les GR sont constamment exposés à l'oxygène, et sont donc bien équipés pour résister aux lésions oxydatives. De plus, les complexes fonctionnels de proteasome 20S reconnaissent et dégradent les protéines modérément oxydées, et certaines protéines peuvent être éliminées par les microparticules. Cette thèse de doctorat est imbriquée dans un projet de recherche global ayant pour objectif la caractérisation des effets de la préparation et du stockage sur la qualité des GR. Evaluer les dommages oxydatifs du GR pendant le stockage est primordial pour comprendre les mécanismes de vieillissement des produits sanguin. Dans ce but, des recherches orientées redoxomique ont été conduites. Dans une première partie, l'oxydation des cystéines et la carbonylation des protéines sont évaluées par électrophorèse bidimensionnelle différentielle et par immunodétection de protéines dérivatisées. Ensuite, les protéines d'intérêt ainsi que les protéines carbonylées, purifiées par affinité, sont identifiées par spectrométrie de masse en tandem. Les protéines cibles de l'oxydation sont classées selon leur fonction moléculaire. Dans une troisième partie, l'activité protéolytique du protéasome 20S est suivie durant la période de stockage. L'impact du stress oxydant sur cette activité a été évalué en utilisant des protéines exogènes oxydées in vitro. Le potentiel rôle défensif de la microvesiculation a également été étudié par la quantification des protéines carbonylées éliminées. Dans ce travail, nous avons observé que différents groupes de protéines sont affectés par l'oxydation réversible ou irréversible de leurs cystéines. De plus, une diminution de la carbonylation en début de stockage dans les extraits solubles et une augmentation de la carbonylation après 4 semaines dans les extraits membranaires ont été montrées. Les fonctions moléculaires engagées par les protéines altérées montrent que les défenses antioxydantes sont oxydées de façon réversible sur leurs résidus cystéines, mais sont également irréversiblement carbonylées. Pendant ce temps, l'activité protéolytique du protéasome 20S décroit de 40 % en fin de stockage. L'incubation d'extraits de GR en début de stockage avec des protéines oxydées exogènes montre un effet inhibiteur « dose-dépendant » et « protéine-dépendant ». Enfin, les microvésicules s'avèrent éliminer des quantités croissantes de protéines carbonylées. La synthèse de ces résultats permet de modéliser une voie oxydative du stockage des GRs, à partir de laquelle de futures recherches seront menées avec pour but l'amélioration des conditions de stockage.
Resumo:
OBJECTIVE To identify metabolic pathways that may underlie susceptibility or resistance to high-fat diet-induced hepatic steatosis. RESEARCH DESIGN AND METHODS We performed comparative transcriptomic analysis of the livers of A/J and C57Bl/6 mice, which are, respectively, resistant and susceptible to high-fat diet-induced hepatosteatosis and obesity. Mice from both strains were fed a normal chow or a high-fat diet for 2, 10, and 30 days, and transcriptomic data were analyzed by time-dependent gene set enrichment analysis. Biochemical analysis of mitochondrial respiration was performed to confirm the transcriptomic analysis. RESULTS Time-dependent gene set enrichment analysis revealed a rapid, transient, and coordinate upregulation of 13 oxidative phosphorylation genes after initiation of high-fat diet feeding in the A/J, but not in the C57Bl/6, mouse livers. Biochemical analysis using liver mitochondria from both strains of mice confirmed a rapid increase by high-fat diet feeding of the respiration rate in A/J but not C57Bl/6 mice. Importantly, ATP production was the same in both types of mitochondria, indicating increased uncoupling of the A/J mitochondria. CONCLUSIONS Together with previous data showing increased expression of mitochondrial β-oxidation genes in C57Bl/6 but not A/J mouse livers, our present study suggests that an important aspect of the adaptation of livers to high-fat diet feeding is to increase the activity of the oxidative phosphorylation chain and its uncoupling to dissipate the excess of incoming metabolic energy and to reduce the production of reactive oxygen species. The flexibility in oxidative phosphorylation activity may thus participate in the protection of A/J mouse livers against the initial damages induced by high-fat diet feeding that may lead to hepatosteatosis.
Resumo:
Analysis of genetically engineered mice deficient in cell cycle regulators, including E2F1, cdk4, and pRB, showed that the major phenotypes are metabolic perturbations. These key cell cycle regulators contribute to lipid synthesis, glucose production, insulin secretion, and glycolytic metabolism. It has been shown that deregulation of these pathways can lead to metabolic perturbations and related metabolic diseases, such as obesity and type II diabetes. The cyclin-cdk-Rb-E2F1 pathway regulates adipogenesis in addition to its well-described roles in cell cycle regulation and cancer. It was also shown that E2F1 directly participates in the regulation of pancreatic growth and function. Similarly, cyclin D3, cdk4, and cdk9 are also adipogenic factors with strong effects on whole organism metabolism. These examples support the emerging notion that cell cycle regulatory proteins also modulate metabolic processes. These cell cycle regulators are activated by insulin and glucose, even in non-proliferating cells. Most importantly, these cell cycle regulators trigger the adaptive metabolic switch that normal and cancer cells require in order to proliferate. These changes include increased lipid synthesis, decreased oxidative metabolism, and increased glycolytic metabolism. In summary, these factors are essential regulators of anabolic biosynthetic processes, blocking at the same time oxidative and catabolic pathways, which is reminiscent of cancer cell metabolism.