807 resultados para neuronal injury
Resumo:
Common variants at only two loci, FTO and MC4R, have been reproducibly associated with body mass index (BMI) in humans. To identify additional loci, we conducted meta-analysis of 15 genome-wide association studies for BMI (n > 32,000) and followed up top signals in 14 additional cohorts (n > 59,000). We strongly confirm FTO and MC4R and identify six additional loci (P < 5 x 10(-8)): TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2 and NEGR1 (where a 45-kb deletion polymorphism is a candidate causal variant). Several of the likely causal genes are highly expressed or known to act in the central nervous system (CNS), emphasizing, as in rare monogenic forms of obesity, the role of the CNS in predisposition to obesity.
Resumo:
Demyelinating diseases are characterized by a loss of oligodendrocytes leading to axonal degeneration and impaired brain function. Current strategies used for the treatment of demyelinating disease such as multiple sclerosis largely rely on modulation of the immune system. Only limited treatment options are available for treating the later stages of the disease, and these treatments require regenerative therapies to ameliorate the consequences of oligodendrocyte loss and axonal impairment. Directed differentiation of adult hippocampal neural stem/progenitor cells (NSPCs) into oligodendrocytes may represent an endogenous source of glial cells for cell-replacement strategies aiming to treat demyelinating disease. Here, we show that Ascl1-mediated conversion of hippocampal NSPCs into mature oligodendrocytes enhances remyelination in a diphtheria-toxin (DT)-inducible, genetic model for demyelination. These findings highlight the potential of targeting hippocampal NSPCs for the treatment of demyelinated lesions in the adult brain.
Resumo:
Jim Baldassaro leaping over the opposing goalie in a 1981 game.
Resumo:
The purpose of the current undertaking was to study the electrophysiological properties of the sleep onset period (SOP) in order to gain understanding into the persistent sleep difficulties of those who complain of insomnia following mild traumatic brain injury (MTBI). While many believe that symptoms of post concussion syndrome (PCS) following MTBI resolve within 6 to 12 months, there are a number of people who complain of persistent sleep difficulty. Two models were proposed which hypothesize alternate electrophysiological presentations of the insomnia complaints of those sustaining a MTBI: 1) Analyses of standard polysomnography (PSG) sleep parameters were conducted in order to determine if the sleep difficulties of the MTBI population were similar to that of idiopathic insomniacs (i.e. greater proportion ofREM sleep, reduced delta sleep); 2) Power spectral analysis was conducted over the SOP to determine if the sleep onset signature of those with MTBI would be similar to psychophysiological insomniacs (characterized by increased cortical arousal). Finally, exploratory analyses examined whether the sleep difficulties associated with MTBI could be explained by increases in variability of the power spectral data. Data were collected from 9 individuals who had sustained a MTBI 6 months to 5 years earlier and reported sleep difficulties that had arisen within the month subsequent to injury and persisted to the present. The control group consisted of 9 individuals who had experienced neither sleep difficulties, nor MTBI. Previous to spending 3 consecutive uninterrupted nights in the sleep lab, subjects completed questionnaires regarding sleep difficulties, adaptive functioning, and personality.
Resumo:
Traumatic brain injury (TBI) often affects social adaptive functioning and these changes in social adaptability are usually associated with general damage to the frontal cortex. Recent evidence suggests that certain neurons within the orbitofrontal cortex appear to be specialized for the processing of faces and facial expressions. The orbitofrontal cortex also appears to be involved in self-initiated somatic activation to emotionally-charged stimuli. According to Somatic Marker Theory (Damasio, 1994), the reduced physiological activation fails to provide an individual with appropriate somatic cues to personally-relevant stimuli and this, in turn, may result in maladaptive behaviour. Given the susceptibility of the orbitofrontal cortex in TBI, it was hypothesized that impaired perception and reactivity to socially-relevant information might be responsible for some of the social difficulties encountered after TBL Fifteen persons who sustained a moderate to severe brain injury were compared to age and education matched Control participants. In the first study, both groups were presented with photographs of models displaying the major emotions and either asked to identify the emotions or simply view the faces passively. In a second study, participants were asked to select cards from decks that varied in terms of how much money could be won or lost. Those decks with higher losses were considered to be high-risk decks. Electrodermal activity was measured concurrently in both situations. Relative to Controls, TBI participants were found to have difficulty identifying expressions of surprise, sadness, anger, and fear. TBI persons were also found to be under-reactive, as measured by electrodermal activity, while passively viewing slides of negative expressions. No group difference,in reactivity to high-risk card decks was observed. The ability to identify emotions in the face and electrodermal reactivity to faces and to high-risk decks in the card game were examined in relationship to social monitoring and empathy as described by family members or friends on the Brock Adaptive Functioning Questionnaire (BAFQ). Difficulties identifying negative expressions (i.e., sadness, anger, fear, and disgust) predicted problems in monitoring social situations. As well, a modest relationship was observed between hypo-arousal to negative faces and problems with social monitoring. Finally, hypo-arousal in the anticipation of risk during the card game related to problems in empathy. In summary, these data are consistent with the view that alterations in the ability to perceive emotional expressions in the face and the disruption in arousal to personally-relevant information may be accounting for some of the difficulties in social adaptation often observed in persons who have sustained a TBI. Furthermore, these data provide modest support for Damasio's Somatic Marker Theory in that physiological reactivity to socially-relevant information has some value in predicting social function. Therefore, the assessment of TBI persons, particularly those with adaptive behavioural problems, should be expanded to determine whether alterations in perception and reactivity to socially-relevant stimuli have occurred. When this is the case, rehabilitative strategies aimed more specifically at these difficulties should be considered.
Resumo:
Mild head injury (MHI) is a serious cause of neurological impairment as is evident by the substantial percentage (15%) of individuals who remain symptomatic at least 1-year following "mild" head trauma. However, there is a paucity of research investigating the social consequences following a MHI. The first objective of this study was to examine whether measures of executive functioning were predictive of specific forms of antisocial behaviour, such as reactive aggression, impulsive antisocial behaviour, behavioural disinhibition, and deficits in social awareness after controlling for the variance accounted for by sex differences. The second objective was to investigate whether a history of MHI was predictive of these same social consequences after controlling for both sex differences and executive functioning. Ninety university students participated in neuropsychological testing and filled out self-report questionnaires. Fifty-two percent of the sample self-reported experiencing a MHI. As expected, men were more reactively aggressive and antisocial than women. Furthermore, executive dysfunction predicted reactive aggression and impulsive antisocial behaviour after controlling for sex differences. Finally, as expected, MHI status predicted reactive aggression, impulsive antisocial behaviour, and behavioural disinhibition after controlling for sex and executive fimctioning. MHI status and executive functioning did not predict social awareness or sensitivity to reward or punishment. These results suggest that incurring a MHI has serious social consequences that mirror the neurobehavioural profile following severe cases of brain injury. Therefore, the social sequelae after MHI imply a continuum of behavioural deficits between MHI and more severe forms of brain injury.
Resumo:
The current classification system for spinal cord injury (SCI) considers only somatic information and neglects autonomic damage after injiuy. Heart rate variability (HRV) has the potential to be a valuable measure of cardiac autonomic control after (SCI). Five individuals with tetraplegia and four able-bodied controls underwent 1 min continuous ECG recordings during rest, after Metoprolol administration (max dose=3x5mg) and after Atropine administration (0.02mg/kg) in both supine and 40° head-up tilt. After Metoprolol administration there was a 61.8% decrease in the LF:HF ratio in the SCI participants suggesting that the LF:HF ratio is a reflection of cardiac sympathetic outflow. After Atropine administration there was a 99.1% decrease in the HF power in the SCI participants suggesting that HF power is highly representative of cardiac parasympathetic outflow. There were no significant differences between the SCI and able-bodied participants. Thus, HRV measures are a valid index of cardiac autonomic control after SCI.
Resumo:
This study examined work engagement among brain injury rehabilitation professionals with specific attention to how they engage with their work (the extent to which they experience vigor, dedication, and absorption while working) and how they engage with people (the degree to which they are welcoming towards others and demonstrate integrity, responsibility, transparency). This study also tested a theoretical model of work engagement that predicted a relationship between engagement and personal, interpersonal, and organizational capacity. Eighty-one staff employed in a hospital-based brain injury program participated in the study. A quantitative self-report survey was used to measure participants' levels of capacity and engagement and a qualitative question was included to identify initiatives that could be introduced to enhance job performance. As predicted by the model, there were statistically significant positive correlations among all three capacity variables and engagement with work and statistically significant positive correlations between ethical engagement and personal and interpersonal capacity. The results of the qualitative data analysis revealed three broad categories of recommendations for improving job performance (more learning opportunities, more resources to support professional development, and the need to build greater team cohesion). These findings provide initial support for a theoretical model that emphasizes the link between capacity and engagement, which could be used to guide theory-driven interventions aimed at improving the work environment.
Resumo:
The purpose of this qualitative study was to understand the client and occupational therapist experiences of a mental health group. A secondary aim was to explore the extent to which this group seemed to have reflected a client-centred approach. The topic emerged from personal and professional issues related to the therapist as teacher and to inconsistencies in practice with the profession's client-centred philosophy. This philosophy, the study's frame of reference, was established in terms of themes related to the client-therapist relationship and to client values. Typical practice was illustrated through an extensive literature review. Structured didacticexperiential methods aiming toward skill development were predominant. The interpretive sciences and, to a lesser extent, the critical sciences directed the methodology. An ongoing support group at a community mental health clinic was selected as the focus of the study; the occupational therapist leader and three members became the key participants. A series of conversational interviews, the . core method of data collection, was supplemented by observation, document review, further interviews, and fieldnotes. Transcriptions of conversations were returned to participants for verification and for further reflection Analysis primarily consisted of coding and organizing data according to emerging themes. The participants' experiences of group, presented as narrative stories within a group session vignette, were also returned to participants. There was a common understanding of the group's structure and the importance of having "air time" within the group; however, differences in perceptions of such things as the importance of the group in members' lives were noted. All members valued the therapeutic aspects of group, the role of group as weekly activity and, to a lesser extent, the learning that came from group. The researcher's perspective provided a critique of the group experience from a client-centred perspective. Some areas of consistency with client-centred practice were noted (e.g., therapist attitudes); however the group seemed to function far from a client-centred ideal. Members held little authority in a -relationship dominated by the leaders, and leader agendas rather than member values controlled the session. Possible reasons for this discrepancy ranging from past health care encounters through to co-leader discord emerged. The actual and potential significance of this study was discussed according to many areas of implications: to OT practice, especially client-centred group practice, to theory development, to further areas of research and methodology considerations, to people involved in the group and to my personal growth and development.
Resumo:
A large variety of social signals, such as facial expression and body language, are conveyed in everyday interactions and an accurate perception and interpretation of these social cues is necessary in order for reciprocal social interactions to take place successfully and efficiently. The present study was conducted to determine whether impairments in social functioning that are commonly observed following a closed head injury, could at least be partially attributable to disruption in the ability to appreciate social cues. More specifically, an attempt was made to determine whether face processing deficits following a closed head injury (CHI) coincide with changes in electrophysiological responsivity to the presentation of facial stimuli. A number of event-related potentials (ERPs) that have been linked specifically to various aspects of visual processing were examined. These included the N170, an index of structural encoding ability, the N400, an index of the ability to detect differences in serially presented stimuli, and the Late Positivity (LP), an index of the sensitivity to affective content in visually-presented stimuli. Electrophysiological responses were recorded while participants with and without a closed head injury were presented with pairs of faces delivered in a rapid sequence and asked to compare them on the basis of whether they matched with respect to identity or emotion. Other behavioural measures of identity and emotion recognition were also employed, along with a small battery of standard neuropsychological tests used to determine general levels of cognitive impairment. Participants in the CHI group were impaired in a number of cognitive domains that are commonly affected following a brain injury. These impairments included reduced efficiency in various aspects of encoding verbal information into memory, general slower rate of information processing, decreased sensitivity to smell, and greater difficulty in the regulation of emotion and a limited awareness of this impairment. Impairments in face and emotion processing were clearly evident in the CHI group. However, despite these impairments in face processing, there were no significant differences between groups in the electrophysiological components examined. The only exception was a trend indicating delayed N170 peak latencies in the CHI group (p = .09), which may reflect inefficient structural encoding processes. In addition, group differences were noted in the region of the N100, thought to reflect very early selective attention. It is possible, then, that facial expression and identity processing deficits following CHI are secondary to (or exacerbated by) an underlying disruption of very early attentional processes. Alternately the difficulty may arise in the later cognitive stages involved in the interpretation of the relevant visual information. However, the present data do not allow these alternatives to be distinguished. Nonetheless, it was clearly evident that individuals with CHI are more likely than controls to make face processing errors, particularly for the more difficult to discriminate negative emotions. Those working with individuals who have sustained a head injury should be alerted to this potential source of social monitoring difficulties which is often observed as part of the sequelae following a CHI.
Resumo:
We examined the cognitive and emotional sequelae following mild head injury (MHI; e.g., concussion) in high-functioning individuals and whether persons with MHI pre~ent, both physiologically and via self-report, in a manner different from (i.e., underaroused) that of persons who have no history of head injury. We also investigated the effect arousal state ~as on the cognitive performance of this population. Using a quasiexperimental research design (N = 91), we examined changes in attention, working memory, and cognitive flexibility (subtests ofthe WAIS-III, 1997,WMS-III, 1997, & DKEFS, 2002) as a function of manipulated arousal (i.e., induced psychosocial stress/activation; reduced activation/relaxation). In addition to self-reported arousal and state anxiety (State-Trait Anxiety Inventory; Speilberger, 1983a) measures, physiological indices of arousal state (i.e., electrodermal responsivity, heart rate, and respiration activity) were recorded (via Polygraph Professional Suite, 2008) across a 2.5 hour interval while completing various cognitive tasks. Students also completed the Post-concussive Symptom Checklist (Gouvier et aI., 1992). The results demonstrate that university students who report a history ofMHI (i.e., "altered state of consciousness") experience significantly lower levels of anxiety, were physiologically underaroused, and were less responsive to stressors in their environment, compared to their non-~HI cohorts. As expected, cognitive flexibility (but not other neuropsychological measures of cognition) was advantaged with increased stress, and disadvantaged with reduced stress, in persons with reported MHI, but not for those without reported MHI which provided limited support for our hypothesis. Further, university students who had no complaints related to their previous MHI endorsed a greater number of traditional post-concussive symptoms in terms of intensity, duration and frequency as compared to students who did not report a MHI. The underarousal in traumatic brain injury has been associated with (ventromedial prefrontal cortex) VMPFC disruption and may be implicated in MHI generally. Students who report sustaining a previous MHI may be less able to physiologically respond and/or cognitively appraise, stressful experiences as compared to their no-MHI cohort and experience persistent, long-lasting consequences despite the subtle nature of a history of head injury.
Resumo:
Individuals who have sustained a traumatic brain injury (TBI) often complain of t roubl e sleeping and daytime fatigue but little is known about the neurophysiological underpinnings of the s e sleep difficulties. The fragile sleep of thos e with a TBI was predicted to be characterized by impairments in gating, hyperarousal and a breakdown in sleep homeostatic mechanisms. To test these hypotheses, 20 individuals with a TBI (18- 64 years old, 10 men) and 20 age-matched controls (18-61 years old, 9 men) took part in a comprehensive investigation of their sleep. While TBI participants were not recruited based on sleep complaint, the fmal sample was comprised of individuals with a variety of sleep complaints, across a range of injury severities. Rigorous screening procedures were used to reduce potential confounds (e.g., medication). Sleep and waking data were recorded with a 20-channel montage on three consecutive nights. Results showed dysregulation in sleep/wake mechanisms. The sleep of individuals with a TBI was less efficient than that of controls, as measured by sleep architecture variables. There was a clear breakdown in both spontaneous and evoked K-complexes in those with a TBI. Greater injury severities were associated with reductions in spindle density, though sleep spindles in slow wave sleep were longer for individuals with TBI than controls. Quantitative EEG revealed an impairment in sleep homeostatic mechanisms during sleep in the TBI group. As well, results showed the presence of hyper arousal based on quantitative EEG during sleep. In wakefulness, quantitative EEG showed a clear dissociation in arousal level between TBls with complaints of insomnia and TBls with daytime fatigue. In addition, ERPs indicated that the experience of hyper arousal in persons with a TBI was supported by neural evidence, particularly in wakefulness and Stage 2 sleep, and especially for those with insomnia symptoms. ERPs during sleep suggested that individuals with a TBI experienced impairments in information processing and sensory gating. Whereas neuropsychological testing and subjective data confirmed predicted deficits in the waking function of those with a TBI, particularly for those with more severe injuries, there were few group differences on laboratory computer-based tasks. Finally, the use of correlation analyses confirmed distinct sleep-wake relationships for each group. In sum, the mechanisms contributing to sleep disruption in TBI are particular to this condition, and unique neurobiological mechanisms predict the experience of insomnia versus daytime fatigue following a TBI. An understanding of how sleep becomes disrupted after a TBI is important to directing future research and neurorehabilitation.
Resumo:
The vitamin A metabolite, retinoic acid (RA) is known to play an important role in the development, patterning and regeneration of nervous tissue, both in the embryo and in the adult. Classically, RA is known to mediate the transcription of target genes through the binding and activation ofits nuclear receptors: the retinoic acid receptors (RARs) and retinoid X receptors (RXRs). Recently, mounting evidence from many animal models has implicated a number of RA-mediated effects operating independently of gene transcription, and thus highlights nove~ nongenornic actions of RA. For example, recent work utilizing cultured neurons from the pond snaa Lymnaea stagnalis, has shown that RA can elicit a regenerative response, growth cone turning, independently of "classical" transcriptional activation While this work illustrates a novel regeneration-inducing effect in culture, it is currently -unknown whether RA also induces regeneration in situ. This study has sought to determine RA's regenerative effucts at the morphological and molecular levels by utilizing an in situ approach focusing on a single identified dopaminergic neuron which possesses a known "mapped" morphology within the CNS. These studies show, for the first time in an invertebrate, that RA can increase neurite outgrowth of dopaminergic cells that have undergone a nerve-crush injury. Utilizing Western blot analysis, it was shown that this effect appears to be independent of any changes in whole CNS expression levels of either the RAR or RXR. Additionally, utilizing immunohistochemistry, to examine protein localization, there does not appear to be any obvious changes in the RXR expression level at the crush site. Changes in cell morphology such as neurity extension are known to be modulated by changes in neuronal firing activity. It has been previously shown that exposure to RA over many days can lead to changes in the electrophysiological properties of cultured Lymnaea neurons; however, no studies have investigated whether short-term exposure to RA can elicit electrophysiological changes and/or changes in firing pattern of neurons in Lymnaea or any other species. The studies performed here show, for the first time in any species, that short-tenn treatment with RA can elicit significant changes in the firing properties of both identified dopaminergic neurons and peptidergic neurons. This effect appears to be independent of protein synthesis, activation of protein kinase A or phospholipase C, and calcium influx but is both dose-dependent and isomer-dependent. These studies provide evidence that the RXR, but not RAR, may be involved, and that intracellular calcium concentrations decrease upon RAexposure with a time course, dose-dependency and isomer-dependency that coincide with the RA-induced electrophysiological changes. Taken together, these studies provide important evidence highlighting RA as a multifunctional molecule, inducing morphological, molecular and electrophysiological changes within the CNS, and highlight the many pathways through which RA may operate to elicit its effects.