935 resultados para negotiation with Chinese
Resumo:
We have calculated the photoelectric response in a specially designed double barrier structure. It has been verilied that a transfer of the internal photovoltaic effect in the quantum well to the tunnelling transport through above-barrier quasibound states of the emitter barrier may give rise to a remarkable photocurrent.
Resumo:
GaAs absorber was grown at low temperature (550degreesC) by metal organic chemical vapour deposition (MOCVD) and was used as an output coupler with which we realized Q-switching modelocked Yb3+-doped fibre laser. The shortest period of the envelope of the Q-switched modelocking is about 3mus. The modelocking threshold is 4.27W and the highest average output pulse power is 290 mW. The modelocking frequency is 12 MHz.
Resumo:
An electro-optic variable optical attenuator in silicon-on-insulator is designed and fabricated. A series Structure is used to improve the device efficiency Compared to the attenuator in the single p-i-n diode Structure in the same modulating length, the attenuation range of the device in the series structure improves 2-3 times in the same injecting current density, while the insertion loss is not affected. The maximum dynamic attenuation of the device is greater than 30 dB. The response frequency is obtained to be about 2 MHz.
Resumo:
A 1.55-mum laser diode integrated with a spot-size converter was fabricated in a single step epitaxial by using the conventional photolithography and chemical wet etching process. The device was constructed by a conventional ridge waveguide active layer and a larger passive ridge-waveguide layer. The threshold current was 40 mA together with high slope efficiency of 0.24 W/A. The beam divergence angles in the horizontal and vertical directions were as small as 12.0degrees x 15.0degrees, respectively, resulting in about 3.2-dB coupling losses with a cleaved optical fibre.
Resumo:
Based on thermo-optical effect of silicon, a 2 x 2 switch is fabricated in silicon-on-insulator by chemical etching. The switch presents an extinction ratio of 26 dB and a power consumption of 169 mW. The response time F similar to 10.5 mus.
Resumo:
A compact optical switch matrix was designed, in which light circuits were folded by total internal reflective (TIR) mirrors. Two key elements, 2 x 2 switch and TIR mirror, have been fabricated on silicon-on-insulator wafer by anisotropy chemical etching. The 2 x 2 switch showed very low power consumption of 140 mW and a very high speed of 8 +/- 1 mus. An improved design for the TIR mirror was developed, and the fabricated mirror with smooth and vertical reflective facet showed low excess loss of 0.7 +/- 0.3 dB at 1.55 mum.
Resumo:
We have demonstrated a passively Q-switched and mode-locked Nd:YVO4 laser with an intracavity composite semiconductor saturable absorber (ICSSA). Stable Q-switched and mode-locked pulses with Q-switched envelope pulse duration of 180 ns and pulse repetition rate of 72KHz have been obtained. The maximum average output power was 1.45W at 8W incident pump power. The repetition rate of the mode-locked pulses inside the Q-switched envelope was 154 MHz. Experimental results revealed that this ICSSA was suitable for Q-switched and mode-locked solid-state lasers. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
GaAs (001) substrates are patterned by electron beam lithography and wet chemical etching to control the nucleation of InAs quantum dots (QDs). InAs dots are grown on the stripe-patterned substrates by solid source molecular beam epitaxy, A thick buffer layer is deposited on the strip pattern before the deposition of InAs. To enhance the surface diffusion length of the In atoms, InAs is deposited with low growth rate and low As pressure. The AFM images show that distinct one-dimensionally ordered InAs QDs with homogeneous size distribution are created, and the QDs preferentially nucleate along the trench. With the increasing amount of deposited InAs and the spacing of the trenches, a number of QDs are formed beside the trenches. The distribution of additional QDs is long-range ordered, always along the trenchs rather than across the spacing regions.
Resumo:
A two-dimensional (2D) photonic crystal waveguide in the Gamma-K direction with triangular lattice on a silicon-on insulator (SOI) substrate in the near-infrared band is fabricated by the combination of electron beam lithography and inductively coupled plasma etching. Its transmission characteristics are analysed from the stimulated band diagram by the effective index and the 2D plane wave expansion (PWE) methods. In the experiment, the transmission band edge in a longer wavelength of the photonic crystal waveguide is about 1590 nm, which is in good qualitative agreement with the simulated value. However, there is a disagreement between the experimental and the simulated results when the wavelength ranges from 1607 to 1630 nm, which can be considered as due to the unpolarized source used in the transmission measurement.
Resumo:
Cr-doped InAs self-organized diluted magnetic quantum dots (QDs) are grown by low-temperature molecular-beam epitaxy, Magnetic measurements reveal that the Curie temperature of all the InAs:Cr QDs layers with Cr/In flux ratio changing from 0.026 to 0.18 is beyond 400 K. High-resolution cross sectional transmission electron microscopy images indicate that InAs:Cr QDs are of the zincblende structure. Possible origins responsible for the high Curie temperature are discussed.
Resumo:
A new device of two parallel distributed feedback (DFB) lasers integrated monolithically with Y-branch waveguide coupler was fabricated by means of quantum well intermixing. Optical microwave signal was generated in the Y-branch waveguide coupler through frequency beating of the two laser modes coming from two DFB laser in parallel, which had a small difference in frequency. Continuous rapid tuning of optical microwave signal from 13 to 42 GHz were realized by adjusting independently the driving currents injected into the two DFB lasers.
Resumo:
A new AlGaN/AlN/GaN high electron mobility transistor (HEMT) structure using a compositionally step-graded AlGaN barrier layer is grown on sapphire by metalorganic chemical vapour deposition (MOCVD). The structure demonstrates significant enhancement of two-dimensional electron gas (2DEG) mobility and smooth surface morphology compared with the conventional HEMT structure with high Al composition AlGaN barrier. The high 2DEG mobility of 1806 cm(2)/Vs at room temperature and low rms surface roughness of 0.220 nm for a scan area of 5 mu m x 5 mu m are attributed to the improvement of interfacial and crystal quality by employing the step-graded barrier to accommodate the large lattice mismatch stress. The 2DEG sheet density is independent of the measurement temperature, showing the excellent 2DEG confinement of the step-graded structure. A low average sheet resistance of 314.5 Omega/square, with a good resistance uniformity of 0.68%, is also obtained across the 50 mm epilayer wafer. HEMT devices are successfully fabricated using this material structure, which exhibits a maximum extrinsic transconductance of 218 mS/mm and a maximum drain current density of 800 mA/mm.
Resumo:
We report the operation of a bidirectional picosecond pulsed ring Nd:YVO4 laser based on a low-temperature-grown semiconductor saturable absorber mirror. Except for the laser crystal, the six-mirror ring laser cavity has no intra-cavity elements such as focusing lens or mirror. The bidirectional mode locked pluses are obtained at the repetition rate of 117.5 MHz, pulse duration of 81 ps, power of 2 x 200 mW.
Resumo:
Organic light emitting diodes with an interface of organic acceptor 3-, 4-, 9-, 10-perylenetetracarboxylic dianhydride (PTCDA) and donor copper phthalocyanine (CuPc) involved in hole injection are fabricated. As compared to the conventional device using a 5 nm CuPc hole injection layer, the device using an interface of 10 nm PTCDA and 5 rim CuPc layers shows much lower operating voltage with an increase of about 46% in the maximum power efficiency. The enhanced device performance is attributed to the efficient hole generation at the PTCDA/CuPc interface. This study provides a new way of designing hole injection.
Resumo:
Extremely low density InAs quantum dots (QDs) are grown by molecular beam droplet epitaxy, The gallium deposition amount is optimized to saturate exactly the excess arsenic atoms present on the GaAs substrate surface during growth, and low density InAs/GaAs QDs (4x10(6) cm(-2)) are formed by depositing 0.65 monolayers (ML) of indium. This is much less than the critical deposition thickness (1.7 ML), which is necessary to form InAs/GaAs QDs with the conventional Stranski-Krastanov growth mode. The narrow photoluminescence line-width of about 24 meV is insensitive to cryostat temperatures from 10 K to 250 K. All measurements indicate that there is no wetting layer connecting the QDs.