808 resultados para multivariate hidden Markov model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a hierarchical probabilistic model for ordinal matrix factorization. Unlike previous approaches, we model the ordinal nature of the data and take a principled approach to incorporating priors for the hidden variables. Two algorithms are presented for inference, one based on Gibbs sampling and one based on variational Bayes. Importantly, these algorithms may be implemented in the factorization of very large matrices with missing entries. The model is evaluated on a collaborative filtering task, where users have rated a collection of movies and the system is asked to predict their ratings for other movies. The Netflix data set is used for evaluation, which consists of around 100 million ratings. Using root mean-squared error (RMSE) as an evaluation metric, results show that the suggested model outperforms alternative factorization techniques. Results also show how Gibbs sampling outperforms variational Bayes on this task, despite the large number of ratings and model parameters. Matlab implementations of the proposed algorithms are available from cogsys.imm.dtu.dk/ordinalmatrixfactorization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accurate prediction of time-changing covariances is an important problem in the modeling of multivariate financial data. However, some of the most popular models suffer from a) overfitting problems and multiple local optima, b) failure to capture shifts in market conditions and c) large computational costs. To address these problems we introduce a novel dynamic model for time-changing covariances. Over-fitting and local optima are avoided by following a Bayesian approach instead of computing point estimates. Changes in market conditions are captured by assuming a diffusion process in parameter values, and finally computationally efficient and scalable inference is performed using particle filters. Experiments with financial data show excellent performance of the proposed method with respect to current standard models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bistable dynamical switches are frequently encountered in mathematical modeling of biological systems because binary decisions are at the core of many cellular processes. Bistable switches present two stable steady-states, each of them corresponding to a distinct decision. In response to a transient signal, the system can flip back and forth between these two stable steady-states, switching between both decisions. Understanding which parameters and states affect this switch between stable states may shed light on the mechanisms underlying the decision-making process. Yet, answering such a question involves analyzing the global dynamical (i.e., transient) behavior of a nonlinear, possibly high dimensional model. In this paper, we show how a local analysis at a particular equilibrium point of bistable systems is highly relevant to understand the global properties of the switching system. The local analysis is performed at the saddle point, an often disregarded equilibrium point of bistable models but which is shown to be a key ruler of the decision-making process. Results are illustrated on three previously published models of biological switches: two models of apoptosis, the programmed cell death and one model of long-term potentiation, a phenomenon underlying synaptic plasticity. © 2012 Trotta et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the inverse reinforcement learning problem, that is, the problem of learning from, and then predicting or mimicking a controller based on state/action data. We propose a statistical model for such data, derived from the structure of a Markov decision process. Adopting a Bayesian approach to inference, we show how latent variables of the model can be estimated, and how predictions about actions can be made, in a unified framework. A new Markov chain Monte Carlo (MCMC) sampler is devised for simulation from the posterior distribution. This step includes a parameter expansion step, which is shown to be essential for good convergence properties of the MCMC sampler. As an illustration, the method is applied to learning a human controller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a recent seminal paper, Gibson and Wexler (1993) take important steps to formalizing the notion of language learning in a (finite) space whose grammars are characterized by a finite number of parameters. They introduce the Triggering Learning Algorithm (TLA) and show that even in finite space convergence may be a problem due to local maxima. In this paper we explicitly formalize learning in finite parameter space as a Markov structure whose states are parameter settings. We show that this captures the dynamics of TLA completely and allows us to explicitly compute the rates of convergence for TLA and other variants of TLA e.g. random walk. Also included in the paper are a corrected version of GW's central convergence proof, a list of "problem states" in addition to local maxima, and batch and PAC-style learning bounds for the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present an approach to discretizing multivariate continuous data while learning the structure of a graphical model. We derive the joint scoring function from the principle of predictive accuracy, which inherently ensures the optimal trade-off between goodness of fit and model complexity (including the number of discretization levels). Using the so-called finest grid implied by the data, our scoring function depends only on the number of data points in the various discretization levels. Not only can it be computed efficiently, but it is also independent of the metric used in the continuous space. Our experiments with gene expression data show that discretization plays a crucial role regarding the resulting network structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mark Pagel, Andrew Meade (2004). A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence or character-state data. Systematic Biology, 53(4), 571-581. RAE2008

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Obesity is the most important health challenge faced at a global level and represents a rapidly growing problem to the health of populations. Given the escalating global health problem of obesity and its co-morbidities, the need to re-appraise its management is more compelling than ever. The normalisation of obesity within our society and the acceptance of higher body weights have led to individuals being unaware of the reality of their weight status and gravity of this situation. Recognition of the problem is a key component of obesity management and it remains especially crucial to address this issue. A large amount of research has been undertaken on obesity however, limited research has been undertaken using the Health Belief Model. Aim: The aim of the research was to determine factors relating to motivation to change behaviour in individuals who perceive themselves to be overweight and investigate whether the constructs of the Health Belief Model help to explain motivation to change behaviour. Method: The research design was quantitative, correlational and cross-sectional. The design was guided by the Health Belief Model. Data Collection: Data were collected online using a multi-section and multi-item questionnaire, developed from a review of the theoretical and empirical research. Descriptive and inferential statistical analyses were employed to describe relationships between variables. Sample: A sample of 202 men and women who perceived themselves to be overweight participated in the research. Results: Following multivariate regression analysis, perceived barriers to weight loss and perceived benefits of weight loss were significant predictors of motivation to change behaviour. The perceived barriers to weight loss which were significant were psychological barriers to weight loss (p =<0.019) and environmental barriers to physical activity (p=<0.032).The greatest predictor of motivation to change behaviour was the perceived benefits of weight loss (p<0.001). Perceived susceptibility to obesity and perceived severity of obesity did not emerge as significant predictors in this model. Total variance explained by the model was 33.5%. Conclusion: Perceived barriers to weight loss and perceived benefits of weight loss are important determinants of motivation to change behaviour. The current study demonstrated the limited applicability of the Health Belief Model constructs to motivation to change behaviour, as not all core dimensions proved significant predictors of the dependant variable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Assuming that daily spot exchange rates follow a martingale process, we derive the implied time series process for the vector of 30-day forward rate forecast errors from using weekly data. The conditional second moment matrix of this vector is modelled as a multivariate generalized ARCH process. The estimated model is used to test the hypothesis that the risk premium is a linear function of the conditional variances and covariances as suggested by the standard asset pricing theory literature. Little supportt is found for this theory; instead lagged changes in the forward rate appear to be correlated with the 'risk premium.'. © 1990.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Synthetic biology seeks to enable programmed control of cellular behavior though engineered biological systems. These systems typically consist of synthetic circuits that function inside, and interact with, complex host cells possessing pre-existing metabolic and regulatory networks. Nevertheless, while designing systems, a simple well-defined interface between the synthetic gene circuit and the host is frequently assumed. We describe the generation of robust but unexpected oscillations in the densities of bacterium Escherichia coli populations by simple synthetic suicide circuits containing quorum components and a lysis gene. Contrary to design expectations, oscillations required neither the quorum sensing genes (luxR and luxI) nor known regulatory elements in the P(luxI) promoter. Instead, oscillations were likely due to density-dependent plasmid amplification that established a population-level negative feedback. A mathematical model based on this mechanism captures the key characteristics of oscillations, and model predictions regarding perturbations to plasmid amplification were experimentally validated. Our results underscore the importance of plasmid copy number and potential impact of "hidden interactions" on the behavior of engineered gene circuits - a major challenge for standardizing biological parts. As synthetic biology grows as a discipline, increasing value may be derived from tools that enable the assessment of parts in their final context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A generalized Markov Brnching Process (GMBP) is a Markov branching model where the infinitesimal branching rates are modified with an interaction index. It is proved that there always exists only one GMBP. An associated differential-integral equation is derived. The extinction probalility and the mean and conditional mean extinction times are obtained. Ergodicity and stability of GMBP with resurrection are also considered. Easy checking criteria are established for ordinary and strong ergodicty. The equilibrium distribution is given in an elegant closed form. The probability meaning of our results is clear and thus explained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the optimum design of pilot-symbol-assisted modulation (PSAM) schemes with feedback. The received signal is periodically fed back to the transmitter through a noiseless delayed link and the time-varying channel is modeled as a Gauss-Markov process. We optimize a lower bound on the channel capacity which incorporates the PSAM parameters and Kalman-based channel estimation and prediction. The parameters available for the capacity optimization are the data power adaptation strategy, pilot spacing and pilot power ratio, subject to an average power constraint. Compared to the optimized open-loop PSAM (i.e., the case where no feedback is provided from the receiver), our results show that even in the presence of feedback delay, the optimized power adaptation provides higher information rates at low signal-to-noise ratios (SNR) in medium-rate fading channels. However, in fast fading channels, even the presence of modest feedback delay dissipates the advantages of power adaptation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the context of trans-dermal drug delivery it is very important to have mechanistic insight into the barrier function of the skin's stratum corneum and the diffusion mechanisms of topically applied drugs. Currently spectroscopic imaging techniques are evolving which enable a spatial examination of various types of samples in a dynamic way. ATR-FTIR imaging opens up the possibility to monitor spatial diffusion profiles across the stratum corneum of a skin sample. Multivariate data analyses methods based on factor analysis are able to provide insight into the large amount of spectroscopically complex and highly overlapping signals generated. Multivariate target factor analysis was used for spectral resolution and local diffusion profiles with time through stratum corneum. A model drug, 4-cyanophenol in polyethylene glycol 600 and water was studied. Results indicate that the average diffusion profiles between spatially different locations show similar profiles despite the heterogeneous nature of the biological sample and the challenging experimental set-up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A communication system model for mutual information performance analysis of multiple-symbol differential M-phase shift keying over time-correlated, time-varying flat-fading communication channels is developed. This model is a finite-state Markov (FSM) equivalent channel representing the cascade of the differential encoder, FSM channel model and differential decoder. A state-space approach is used to model channel phase time correlations. The equivalent model falls in a class that facilitates the use of the forward backward algorithm, enabling the important information theoretic results to be evaluated. Using such a model, one is able to calculate mutual information for differential detection over time-varying fading channels with an essentially finite time set of correlations, including the Clarke fading channel. Using the equivalent channel, it is proved and corroborated by simulations that multiple-symbol differential detection preserves the channel information capacity when the observation interval approaches infinity.