944 resultados para maximal ontological completeness
Resumo:
The presence of palmitoyl-CoA synthetase (EC 6.2.1.3) in the brush borderfree particulate fraction of chicken intestinal mucosa is demonstrated. The enzyme was dependent on the simultaneous presence of lysophosphatidylcholine and Triton X-100 as well as ATP, CoA and Mg2+ for maximal activity. Lysophosphatidylcholine could not be replaced by other lipids. Enzyme preparations solubilized by Triton X-100 or lysophosphatidylcholine were still dependent on the presence of detergents for maximal activity.
Resumo:
A simple procedure for the state minimization of an incompletely specified sequential machine whose number of internal states is not very large is presented. It introduces the concept of a compatibility graph from which the set of maximal compatibles of the machine can be very conveniently derived. Primary and secondary implication trees associated with each maximal compatible are then constructed. The minimal state machine covering the incompletely specified machine is then obtained from these implication trees.
Resumo:
This article examines the nature of good and evil through the prism of Star Wars, arguing that the ostensible dichotomy between the ‘good’ Jedi and the ‘evil’ Sith is false, and instead both the Jedi and the Sith engage in violence, which is evil. Anakin Skywalker then arrives as the Christ-figure who becomes evil and ‘dies’ to destroy the old rigid law of the letter adhered to by the Jedi, before resurrecting and sacrificing himself to defeat the Sith transgressors. As Milbank argues, the act of selfless love by Anakin as the Christ-figure therefore produces the good, the end of violent conflict which is ontological peace, and institutes the law of love which leads to life and peace.
Resumo:
The in vitro development of hamster preimplantation embryos is supported by non-glucose energy substrates. To investigate the importance of embryonic metabolism, influence of succinate and malate on the development of hamster 8-cell embryos to blastocysts was examined using a chemically defined protein-free modified hamster embryo culture medium-2 (HECM-2m). There was a dose-dependent influence of succinate on blastocyst development; 0.5 mM succinate was optimal (85.1% ± 3.9 vs. 54.5% ± 3.5). In succinate-supplemented HECM-2m, blastocyst development was reduced by omission of lactate (68.5% ± 7.2), but not pyruvate (85.8% ± 6.2) or glutamine (84.1% ± 2.1). Succinate along with either glutamine or lactate or pyruvate poorly supported blastocyst development (28%-58%). Malate also stimulated blastocyst development; 0.01 mM malate was optimal (86.3% ± 2.8). Supplementation of both succinate and malate to HECM-2m supported maximal (100%) blastocyst development, which was inhibited 4-fold by the addition of glucose/phosphate. The mean cell numbers (MCN) of blastocysts cultured in succinate-supplemented HECM-2m was higher (28.3 ± 1.1) than it was for those cultured in the absence of glutamine or pyruvate (range 20-24). The MCN was the highest (33.4 ± 1.6) for blastocysts cultured in succinate-malate-supplemented HECM-2m followed by those in succinate (28.3 ± 1.1) or malate (24.7 ± 0.5) supplemented HECM-2m. Embryo transfer experiments showed that 29.8% (±4.5) of transferred blastocysts cultured in succinate-malate-supplemented HECM-2m produced live births, similar (P > 0.1) to the control transfers of freshly recovered 8-cells (33.5% ± 2.0) or blastocysts (28.9% ± 3.0). These data show that supplementation of succinate and malate to HECM-2m supports 100% development of hamster 8-cell embryos to high quality viable blastocysts and that non-glucose oxidizable energy substrates are the most preferred components in hamster embryo culture medium. Mol. Reprod. Dev. 47:440-447, 1997. © 1997 Wiley-Liss, Inc.
Resumo:
The folding and stability of maltose binding protein (MBP) have been investigated as a function of pH and temperature by intrinsic tryptophan fluorescence, far- and near-UV circular dichroism, and high-sensitivity differential scanning calorimetric measurements. MBP is a monomeric, two-domain protein containing 370 amino acids. The protein is stable in the pH range of 4-10.5 at 25 degrees C. The protein exhibits reversible, two-state, thermal and guanidine hydrochloride-mediated denaturation at neutral pH. The thermostability of MBP is maximal at pH 6, with a Tm of 64.9 degrees C and a deltaHm of 259.7 kcal mol(-1). The linear dependence of deltaHm on Tm was used to estimate a value of deltaCp of 7.9 kcal mol(-1) K(-1) or 21.3 cal (mol of residue)(-1) K(-1). These values are higher than the corresponding deltaCp's for most globular proteins studied to date. However, the extrapolated values of deltaH and deltaS (per mole of residue) at 110 degrees C are similar to those of other globular proteins. These data have been used to show that the temperature at which a protein undergoes cold denaturation depends primarily on the deltaCp (per mol of residue) and that this temperature increases with an increase in deltaCp. The predicted decrease in stability of MBP at low temperatures was experimentally confirmed by carrying out denaturant-mediated unfolding studies at neutral pH at 2 and 28 degrees C.
Resumo:
Increased anthropogenic loading of nitrogen (N) and phosphorus (P) has led to an eutrophication problem in the Baltic Sea, and the spring bloom is a key component in the biological uptake of increased nutrient concentrations. The spring bloom in the Baltic Sea is dominated by both diatoms and dinoflagellates. However, the sedimentation of these groups is different: diatoms tend to sink to the sea floor at the end of the bloom, while dinoflagellates to a large degree are been remineralized in the euphotic zone. Understanding phytoplankton competition and species specific ecological strategies is thus of importance for assessing indirect effects of phytoplankton community composition on eutrophication problems. The main objective of this thesis was to describe some basic physiological and ecological characteristics of the main cold-water diatoms and dinoflagellates in the Baltic Sea. This was achieved by specific studies of: (1) seasonal vertical positioning, (2) dinoflagellate life cycle, (3) mixotrophy, (4) primary production, respiration and growth and (5) diatom silicate uptake, using cultures of common cold-water diatoms: Chaetoceros wighamii, C. gracilis, Pauliella taeniata, Thalassiosira baltica, T. levanderi, Melosira arctica, Diatoma tenuis, Nitzschia frigida, and dinoflagellates: Peridiniella catenata, Woloszynskia halophila and Scrippsiella hangoei. The diatoms had higher primary production capacity and lower respiration rate compared with the dinoflagellates. This difference was reflected in the maximum growth rate, which for the examined diatoms range from 0.6 to 1.2 divisions d-1, compared with 0.2 to 0.3 divisions d-1 for the dinoflagellates. Among diatoms there were species specific differences in light utilization and uptake of silicate, and C. wighamii had the highest carbon assimilation capacity and maximum silicate uptake. The physiological properties of diatoms and dinoflagellates were used in a model of the onset of the spring bloom: for the diatoms the model could predict the initiation of the spring bloom; S. hangoei, on the other hand, could not compete successfully and did not obtain positive growth in the model. The other dinoflagellates did not have higher growth rates or carbon assimilation rates and would thus probably not perform better than S. hangoei in the model. The dinoflagellates do, however, have competitive advantages that were not included in the model: motility and mixotrophy. Previous investigations has revealed that the chain-forming P. catenata performs diurnal vertical migration (DVM), and the results presented here suggest that active positioning in the water column, in addition to DVM, is a key element in this species' life strategy. There was indication of mixotrophy in S. hangoei, as it produced and excreted the enzyme leucine aminopeptidase (LAP). Moreover, there was indirect evidence that W. halophila obtains carbon from other sources than photosynthesis when comparing increase in cell numbers with in situ carbon assimilation rates. The results indicate that mixotrophy is a part of the strategy of vernal dinoflagellates in the Baltic Sea. There were also indications that the seeding of the spring bloom is very important for the dinoflagellates to succeed. In mesocosm experiments dinoflagellates could not compete with diatoms when their initial numbers were low. In conclusion, this thesis has provided new information about the basic physiological and ecological properties of the main cold-water phytoplankton in the Baltic Sea. The main phytoplankton groups, diatoms and dinoflagellates, have different physiological properties, which clearly separate their life strategies. The information presented here could serve as further steps towards better prognostic models of the effects of eutrophication in the Baltic Sea.
Resumo:
The policy reform literature is primarily concerned with the construction of reforms that yield welfare gains. By contrast, this paper’s contribution is to develop a theoretical concept for which the focus is upon the sizes of welfare gains accruing from policy reforms rather than upon their signs. In undertaking this task, and by focusing on tariff reforms, we introduce the concept of a steepest ascent policy reform, which is a locally optimal reform in the sense that it achieves the highest marginal gain in utility of any feasible local reform. We argue that this reform presents itself as a natural benchmark for the evaluation of the welfare effectiveness of other popular tariff reforms such as the proportional tariff reduction and the concertina rules, since it provides the maximal welfare gain of all possible local reforms. We derive properties of the steepest ascent tariff reform, construct an index to measure the relative welfare effectiveness of any given tariff reform, determine conditions under which proportional and concertina reforms are locally optimal and provide illustrative examples.
Resumo:
In every cell, actin is a key component involved in migration, cytokinesis, endocytosis and generation of contraction. In non-muscle cells, actin filaments are very dynamic and regulated by an array of proteins that interact with actin filaments and/or monomeric actin. Interestingly, in non-muscle cells the barbed ends of the filaments are the predominant assembly place, whereas in muscle cells actin dynamics was reported to predominate at the pointed ends of thin filaments. The actin-based thin filament pointed (slow growing) ends extend towards the middle of the sarcomere's M-line where they interact with the thick filaments to generate contraction. The actin filaments in muscle cells are organized into a nearly crystalline array and are believed to be significantly less dynamic than the ones in other cell types. However, the exact mechanisms of the sarcomere assembly and turnover are largely unknown. Interestingly, although sarcomeric actin structures are believed to be relatively non-dynamic, many proteins promoting actin dynamics are expressed also in muscle cells (e.g ADF/cofilin, cyclase-associated protein and twinfilin). Thus, it is possible that the muscle-specific isoforms of these proteins promote actin dynamics differently from their non-muscle counterparts, or that actin filaments in muscle cells are more dynamic than previously thought. To study protein dynamics in live muscle cells, I used primary cell cultures of rat cardiomyocytes. My studies revealed that a subset of actin filaments in cardiomyocyte sarcomeres displays rapid turnover. Importantly, I discovered that the turnover of actin filaments depends on contractility of the cardiomyocytes and that the contractility-induced actin dynamics plays an important role in sarcomere maturation. Together with previous studies those findings suggest that sarcomeres undergo two types of actin dynamics: (1) contractility-dependent turnover of whole filaments and (2) regulatory pointed end monomer exchange to maintain correct thin filament length. Studies involving an actin polymerization inhibitor suggest that the dynamic actin filament pool identified here is composed of filaments that do not contribute to contractility. Additionally, I provided evidence that ADF/cofilins, together with myosin-induced contractility, are required to disassemble non-productive filaments in developing cardiomyocytes. In addition, during these studies we learned that isoforms of actin monomer binding protein twinfilin, Twf-1 and Twf-2a localise to myofibrils in cardiomyocytes and may thus contribute to actin dynamics in myofibrils. Finally, in collaboration with Roberto Dominguez s laboratory we characterized a new actin nucleator in muscle cells - leiomodin (Lmod). Lmod localises towards actin filament pointed ends and its depletion by siRNA leads to severe sarcomere abnormalities in cardiomyocytes. The actin filament nucleation activity of Lmod is enhanced by interactions with tropomyosin. We also revealed that Lmod expression correlates with the maturation of myofibrils, and that it associates with sarcomeres only at relatively late stages of myofibrillogenesis. Thus, Lmod is unlikely to play an important role in myofibril formation, but rather might be involved in the second step of the filament arrangement and/or maintenance through its ability to promote tropomyosin-induced actin filament nucleation occurring at the filament pointed ends. The results of these studies provide valuable new information about the molecular mechanisms underlying muscle sarcomere assembly and turnover. These data offer important clues to understanding certain physiological and pathological behaviours of muscle cells. Better understanding of the processes occurring in muscles might help to find strategies for determining, diagnosis, prognosis and therapy in heart and skeletal muscles diseases.
Resumo:
Introduction Recent reports have highlighted the prevalence of vitamin D deficiency and suggested an association with excess mortality in critically ill patients. Serum vitamin D concentrations in these studies were measured following resuscitation. It is unclear whether aggressive fluid resuscitation independently influences serum vitamin D. Methods Nineteen patients undergoing cardiopulmonary bypass were studied. Serum 25(OH)D3, 1α,25(OH)2D3, parathyroid hormone, C-reactive protein (CRP), and ionised calcium were measured at five defined timepoints: T1 - baseline, T2 - 5 minutes after onset of cardiopulmonary bypass (CPB) (time of maximal fluid effect), T3 - on return to the intensive care unit, T4 - 24 hrs after surgery and T5 - 5 days after surgery. Linear mixed models were used to compare measures at T2-T5 with baseline measures. Results Acute fluid loading resulted in a 35% reduction in 25(OH)D3 (59 ± 16 to 38 ± 14 nmol/L, P < 0.0001) and a 45% reduction in 1α,25(OH)2D3 (99 ± 40 to 54 ± 22 pmol/L P < 0.0001) and i(Ca) (P < 0.01), with elevation in parathyroid hormone (P < 0.0001). Serum 25(OH)D3 returned to baseline only at T5 while 1α,25(OH)2D3 demonstrated an overshoot above baseline at T5 (P < 0.0001). There was a delayed rise in CRP at T4 and T5; this was not associated with a reduction in vitamin D levels at these time points. Conclusions Hemodilution significantly lowers serum 25(OH)D3 and 1α,25(OH)2D3, which may take up to 24 hours to resolve. Moreover, delayed overshoot of 1α,25(OH)2D3 needs consideration. We urge caution in interpreting serum vitamin D in critically ill patients in the context of major resuscitation, and would advocate repeating the measurement once the effects of the resuscitation have abated.
Resumo:
Tuberculosis continues to be a major health challenge, warranting the need for newer strategies for therapeutic intervention and newer approaches to discover them. Here, we report the identification of efficient metabolism disruption strategies by analysis of a reactome network. Protein-protein dependencies at a genome scale are derived from the curated metabolic network, from which insights into the nature and extent of inter-protein and inter-pathway dependencies have been obtained. A functional distance matrix and a subsequent nearness index derived from this information, helps in understanding how the influence of a given protein can pervade to the metabolic network. Thus, the nearness index can be viewed as a metabolic disruptability index, which suggests possible strategies for achieving maximal metabolic disruption by inhibition of the least number of proteins. A greedy approach has been used to identify the most influential singleton, and its combination with the other most pervasive proteins to obtain highly influential pairs, triplets and quadruplets. The effect of deletion of these combinations on cellular metabolism has been studied by flux balance analysis. An obvious outcome of this study is a rational identification of drug targets, to efficiently bring down mycobacterial metabolism.
Resumo:
Unlike the invertases from the mesophilic fungi and yeasts, invertase from a thermophilic fungus,Thermomyces lanuginosus,was unusually unstable bothin vivoandin vitro.The following observations suggested that the unstable nature of the enzyme activity in the cell-free extracts was due to the oxidation of the cysteine residue(s) in the enzyme molecule: (a) the addition of dithiothreitol or reduced glutathione stabilized invertase activity during storage of the extracts and also revived enzyme activity in the extracts which had become inactive with time; (b)N-ethylmaleimide, iodoacetamide, oxidized glutathione, cystine, or oxidized coenzyme A-inactivated invertase; (c) invertase activity was low when the ratio reduced/oxidized glutathione was lower and high when this ratio was higher, suggesting regulation of the enzyme by thiol/disulfide exchange reaction. In contrast to the activation of invertase by the thiol compounds and its inactivation by the disulfides in the cell-free extracts, the purified enzyme did not respond to these compounds. Following its inactivation, the purified enzyme required a helper protein in addition to dithiothreitol for maximal activation. A cellular protein was identified that promoted activation of invertase by dithiothreitol and it was called “PRIA” for theprotein which helps inrestoringinvertaseactivity. The revival of enzyme activity was due to the conversion of the inactive invertase molecules into an active form. A model is presented to explain the modulation of invertase activity by the thiol compounds and the disulfides, both in the crude cell-free extracts and in the purified preparations. The requirement of free sulfhydryl group(s) for the enzyme activity and, furthermore, the reciprocal effects of the thiols and the disulfides on invertase activity have not been reported for invertase from any other source. The finding of a novel invertase which shows a distinct mode of regulation demonstrates the diversity in an enzyme that has figured prominently in the development of biochemistry.
Resumo:
The thermal sensitivity and heat shock response of the different races of the mulberry silkworm Bombyx mori have been analysed. The multivoltine race, strains C. Nichi and Pure Mysore showed better survival rates than the bivoltine race, strain NB4D2 exposed to 41 degrees C and above. In general, the fifth instar larvae and the pupae exhibited maximum tolerance compared to the early larval instars, adult moths or the eggs. Exposure up to 39 degrees C for 1 or 2 h was tolerated equally whereas temperatures above 43 degrees C proved to be lethal for all. Treatment of larvae at 41 degrees C for Ih resulted in a variety of physiological alterations including increased heart beat rates, differential haemocyte counts, enlargement of granulocytes and the presence of additional protein species in the tissues and haemolymph. The appearance of a 93 kDa protein in the haemolymph, fat bodies and cuticle, following the heat shocking of larvae in vivo was a characteristic feature in all the three strains examined although the kinetics of their appearance itself was different. In haemolymph, the protein appeared immediately in response to heat shock in C. Nichi reaching the maximal levels in 2-4 h whereas its presence was noticeable only after 2-4 h recovery time in Pure Mysore and bivoltine races. The fat body from both C. Nichi and NB4D2 showed the presence of 93 kDa, 89 kDa and 70 kDa proteins on heat shock. The haemocytes, on the other hand, expressed only a 70 kDa protein consequent to heat shock. The 93 kDa protein in the haemolymph, therefore could have arisen from some other tissue, possibly the fat body. The 93 kDa protein was detected after heat shock in pupae and adult moths as well, although the presence of an additional (56 kDa) protein was also apparent in the adults. The presence of 46 kDa and 28 kDa bands in addition to the 93 kDa band in the cuticular proteins immediately following heat shock was clearly discernible. The 70 kDa band did not show much changes in the cuticular proteins on heat shock. In contrast to the changes in protein profiles seen in tissues and haemolymph following heat shock in vivo, the heat treatment of isolated fat body or haemolymph in vitro resulted in protein degradation.
Resumo:
Tangible physical systems are more intuitive than Intangible virtual Systems. Mixed reality systems are considered as an alternative to virtual systems, bringing advantages of tangible systems into an interaction. However, past research has mainly focussed on technical aspects of incorporating pervasive-ness and immersive-ness in the virtual systems. This paper reports on an empirical study of intuitive Interaction in a Mixed Reality game system for children and the design aspects that could facilitate intuitive Interaction in such systems. A related samples Friedman’s test showed that the Mixed Reality game system demonstrated more intuitive interactions than non-intuitive Interactions. A linear regression analysis further established that the variation in intuitive Interaction in the Mixed Reality system could be statistically significantly explained primarily by physical affordances offered by the Mixed Reality system and to a lesser extent by the perceived affordances in the system. Design guidelines to develop intuitive Mixed Reality systems are discussed. These guidelines should allow designers to exploit the wonders of advances in technology and at the same time allow users to directly interact with the physical real world. This will allow users to access maximal physical affordances, which are primary contributors to intuitive interaction in Tangible and Mixed Reality systems.
Resumo:
The aims of this study were to describe Finnish day surgery practice at present and to evaluate quality of care by assessing postdischarge minor morbidity and quality indicators. Potential treatment options were approached by investigating the role of oral dexamethasone as a part of multimodal analgesia and the feasibility of day surgery in patients aged 65 years and older. Over a 2-month period, all patient cases at 14 Finnish day surgery or short-stay units were analyzed (Study I). Quality indicators included rates and reasons for overnight admission, readmission, reoperation, cancellations, and patient satisfaction. Recovery during the first postoperative week was assessed at two units (Study II). Altogether 2732 patients graded daily the intensity of predefined symptoms. To define risk factors of postdischarge symptoms, multinomial regression analysis was used. Sixty patients scheduled to undergo day surgery for hallux valgus were randomized to receive twice perioperatively dexamethasone 9 mg or placebo (Study III). Paracetamol 1 g was administered 3 times daily. Rescue medication (oxycodone) consumption during 0-3 postoperative days (POD), maximal pain scores and adverse effects were documented. Medically stable patients aged 65 years or older, scheduled for open inguinal hernia repair, were randomized to receive treatment either as day cases or inpatients (Study IV). Complications, unplanned admissions, healthcare visits, and patients’ acceptance of the type of care provided were assessed during 2 weeks postoperatively. In Study I, unplanned overnight admissions were reported in 5.9%, return hospital visits during PODs 1-28 in 3.7%, and readmissions in 0.7% of patients. Patient satisfaction was high. In Study II, pain was the most common symptom in adult patients (57%). Postdischarge symptoms were more frequent in adults aged < 40 years, children aged ≥ 7 years, females, and following a longer duration of surgery. In Study III, the total median (range) oxycodone consumption during the study period was 45 (0–165) mg in the dexamethasone group, compared with 78 (15–175) mg in the placebo group (P < 0.049). On PODs 0-1, patients in the dexamethasone group reported significantly lower pain scores. Following inguinal hernia repair, no significant differences in outcome measures were seen between the study groups. Patient satisfaction was equally high in day cases and inpatients (Study IV). Finnish day surgery units provide good-quality services. Minor postdischarge symptoms are common, and they are influenced by several patient-, surgery-, and anesthesia-related factors. Oral dexamethasone combined with paracetamol improves pain relief and reduces the need for oxycodone rescue medication following correction of hallux valgus. Day surgery for open inguinal hernia repair is safe and well accepted by patients aged 65 years or older and can be recommended as the primary choice of care for medically stable patients.
Resumo:
The influence of fructose 2,6-bisphosphate on the activation of purified swine kidney phosphofructokinase as a function of the concentration of fructose 6P, ATP and citrate was investigated. The purified enzyme was nearly completely inhibited in the presence of 2 mM ATP. The addition of 20 nM fructose 2,6-P2 reversed the inhibition and restored more than 80% of the activity. In the absence of fructose 2,6-P2 the reaction showed a sigmoidal dependence on fructose-6-phosphate. The addition of 10 nM fructose 2,6-bisphosphate decreased the K0.5 for fructose 6-phosphate from 3 mM to 0.4 mM in the presence of 1.5 mM ATP. These results clearly show that fructose 2,6-bisphosphate increases the affinity of the enzyme for fructose 6-phosphate and decreases the inhibitory effect of ATP. The extent of inhibition by citrate was also significantly decreased in the presence of fructose 2,6-phosphate. The influence of various effectors of phosphofructokinase on the binding of ATP and fructose 6-P to the enzyme was examined in gel filtration studies. It was found that kidney phosphofructokinase binds 5.6 moles of fructose 6-P per mole of enzyme, which corresponds to about one site per subunit of tetrameric enzyme. The KD for fructose 6-P was 13 microM and in the presence of 0.5 mM ATP it increased to 27 microM. The addition of 0.3 mM citrate also increased the KD for fructose 6-P to about 40 microM. AMP, 10 microM, decreased the KD to 5 microM and the addition of fructose 2,6-phosphate decreased the KD for fructose 6-P to 0.9 microM. The addition of these compounds did not effect the maximal amount of fructose 6-P bound to the enzyme, which indicated that the binding site for these compounds might be near, but was not identical to the fructose 6-P binding site. The enzyme bound a maximum of about 12.5 moles of ATP per mole, which corresponds to 3 moles per subunit. The KD of the site with the highest affinity for ATP was 4 microM, and it increased to 15 microM in the presence of fructose 2,6-bisphosphate. The addition of 50 microM fructose 1,6-bisphosphate increased the KD for ATP to 5.9 microM. AMP increased the KD to 5.9 microM whereas 0.3 mM citrate decreased the KD for ATP to about 2 microM.(ABSTRACT TRUNCATED AT 400 WORDS).