729 resultados para longest monotone subsequence
Resumo:
A diode-cladding-pumped mid-infrared passively Q-switched Ho3+-doped fluoride fiber laser using a reverse designed broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 μ J with a pulse width of 1.68 μ s and signal-to-noise ratio (SNR) of ∼50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of 2.971 μ m. To the best of our knowledge, this is the first 3 μ m region SESAM-based Q-switched fiber laser with the highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched fluoride fiber lasers. © 2014 Astro Ltd.
Resumo:
Error free unregenerated transmission is demonstrated looped-back over 5,745 km (62 spans) of installed SSMF along the Adelaide-Perth leg of the IP1 Australia network, which is now the world's longest commercially deployed unregenerated 10 Gbit/s DWDM terrestrial transmission system. © 2000 Optical Society of America.
Resumo:
We demonstrate an all-fiber Tm3+-doped silica fiber laser operating at a wide selectable wavelength range by using different fiber Bragg gratings (FBGs) as wavelength selection elements. With a specifically designed high reflective (HR) FBG and the fiber end as an output coupler, the lasing in the range from 1975 nm to 2150 nm with slope efficiency of >30% can be achieved. By employing a low reflective (LR) FBG as the output coupler, the obtainable wavelengths were extended to the range between 1925 nm and 2200 nm which is the reported longest wavelength from the Tm3+-doped silica fiber lasers. Furthermore, by employing a FBG array in the laser cavity and inducing bend loss between adjacent FBGs in the array, six switchable lasing wavelengths were achieved. © 2014 Optical Society of America.
Resumo:
If ξ is a countable ordinal and (fk) a sequence of real-valued functions we define the repeated averages of order ξ of (fk). By using a partition theorem of Nash-Williams for families of finite subsets of positive integers it is proved that if ξ is a countable ordinal then every sequence (fk) of real-valued functions has a subsequence (f'k) such that either every sequence of repeated averages of order ξ of (f'k) converges uniformly to zero or no sequence of repeated averages of order ξ of (f'k) converges uniformly to zero. By the aid of this result we obtain some results stronger than Mazur’s theorem.
Resumo:
Let H be a real Hilbert space and T be a maximal monotone operator on H. A well-known algorithm, developed by R. T. Rockafellar [16], for solving the problem (P) ”To find x ∈ H such that 0 ∈ T x” is the proximal point algorithm. Several generalizations have been considered by several authors: introduction of a perturbation, introduction of a variable metric in the perturbed algorithm, introduction of a pseudo-metric in place of the classical regularization, . . . We summarize some of these extensions by taking simultaneously into account a pseudo-metric as regularization and a perturbation in an inexact version of the algorithm.
Resumo:
We extend the method of quasilinearization to differential equations in abstract normal cones. Under some assumptions, corresponding monotone iterations converge to the unique solution of our problem and this convergence is superlinear or semi–superlinear
Resumo:
The body of work presented in this thesis are in three main parts: [1] the effect of ultrasound on freezing events of ionic systems, [2] the importance of formulation osmolality in freeze drying, and [3] a novel system for increasing primary freeze drying rate. Chapter 4 briefly presents the work on method optimisation, which is still very much in its infancy. Aspects of freezing such as nucleation and ice crystal growth are strongly related with ice crystal morphology; however, the ice nucleation process typically occurs in a random, non-deterministic and spontaneous manner. In view of this, ultrasound, an emerging application in pharmaceutical sciences, has been applied to aid in the acceleration of nucleation and shorten the freezing process. The research presented in this thesis aimed to study the effect of sonication on nucleation events in ionic solutions, and more importantly how sonication impacts on the freezing process. This work confirmed that nucleation does occur in a random manner. It also showed that ultrasonication aids acceleration of the ice nucleation process and increases the freezing rate of a solution. Cryopreservation of animal sperm is an important aspect of breeding in animal science especially for endangered species. In order for sperm cryopreservation to be successful, cryoprotectants as well as semen extenders are used. One of the factors allowing semen preservation media to be optimum is the osmolality of the semen extenders used. Although preservation of animal sperm has no relation with freeze drying of pharmaceuticals, it was used in this thesis to make a case for considering the osmolality of a formulation (prepared for freeze drying) as a factor for conferring protein protection against the stresses of freeze drying. The osmolalities of some common solutes (mostly sugars) used in freeze drying were determined (molal concentration from 0.1m to 1.2m). Preliminary investigation on the osmolality and osmotic coefficients of common solutes were carried out. It was observed that the osmotic coefficient trend for the sugars analysed could be grouped based on the types of sugar they are. The trends observed show the need for further studies to be carried out with osmolality and to determine how it may be of importance to protein or API protection during freeze drying processes. Primary drying is usually the longest part of the freeze drying process, and primary drying times lasting days or even weeks are not uncommon; however, longer primary drying times lead to longer freeze drying cycles, and consequently increased production costs. Much work has been done previously by others using different processes (such as annealing) in order to improve primary drying times; however, these do not come without drawbacks. A novel system involving the formation of a frozen vial system which results in the creation of a void between the formulation and the inside wall of a vial has been devised to increase the primary freeze drying rate of formulations without product damage. Although the work is not nearly complete, it has been shown that it is possible to improve and increase the primary drying rate of formulations without making any modifications to existing formulations, changing storage vials, or increasing the surface area of freeze dryer shelves.
Resumo:
We work on the research of a zero of a maximal monotone operator on a real Hilbert space. Following the recent progress made in the context of the proximal point algorithm devoted to this problem, we introduce simultaneously a variable metric and a kind of relaxation in the perturbed Tikhonov’s algorithm studied by P. Tossings. So, we are led to work in the context of the variational convergence theory.
Resumo:
∗ The final version of this paper was sent to the editor when the author was supported by an ARC Small Grant of Dr. E. Tarafdar.
Resumo:
∗ Cette recherche a été partiellement subventionnée, en ce qui concerne le premier et le dernier auteur, par la bourse OTAN CRG 960360 et pour le second auteur par l’Action Intégrée 95/0849 entre les universités de Marrakech, Rabat et Montpellier.
Resumo:
The general iteration method for nonexpansive mappings on a Banach space is considered. Under some assumption of fast enough convergence on the sequence of (“almost” nonexpansive) perturbed iteration mappings, if the basic method is τ−convergent for a suitable topology τ weaker than the norm topology, then the perturbed method is also τ−convergent. Application is presented to the gradient-prox method for monotone inclusions in Hilbert spaces.
Resumo:
* The research is supported partly by INTAS: 04-77-7173 project, http://www.intas.be
Resumo:
Composition problem is considered for partition constrained vertex subsets of n dimensional unit cube E^n . Generating numerical characteristics of E^n subsets partitions is considered by means of the same characteristics in 1 − n dimensional unit cube, and construction of corresponding subsets is given for a special particular case. Using pairs of lower layer characteristic vectors for E^(1-n) more characteristic vectors for E^n are composed which are boundary from one side, and which take part in practical recognition of validness of a given candidate vector of partitions.
Resumo:
We present results on characterization of lasers with ultra-long cavity lengths up to 84km, the longest cavity ever reported. We have analyzed the mode structure, shape and width of the generated spectra, intensity fluctuations depending on length and intra-cavity power. The RF spectra exhibit an ultra-dense cavity mode structure (mode spacing is 1.2kHz for 84km), in which the width of the mode beating is proportional to the intra-cavity power while the optical spectra broaden with power according to the square-root law acquiring a specific shape with exponential wings. A model based on wave turbulence formalism has been developed to describe the observed effects.
Resumo:
AMS Subj. Classification: 49J15, 49M15