Somme Ponctuelle D'operateurs Maximaux Monotones


Autoria(s): Attouch, H.; Riahi, H.; Théra, M.
Data(s)

29/11/2009

29/11/2009

1996

Resumo

∗ Cette recherche a été partiellement subventionnée, en ce qui concerne le premier et le dernier auteur, par la bourse OTAN CRG 960360 et pour le second auteur par l’Action Intégrée 95/0849 entre les universités de Marrakech, Rabat et Montpellier.

The primary goal of this paper is to shed some light on the maximality of the pointwise sum of two maximal monotone operators. The interesting purpose is to extend some recent results of Attouch, Moudafi and Riahi on the graph-convergence of maximal monotone operators to the more general setting of reflexive Banach spaces. In addition, we present some conditions which imply the uniform Brézis-Crandall-Pazy condition. Afterwards, we present, as a consequence, some recent conditions which ensure the Mosco-epiconvergence of the sum of convex proper lower semicontinuous functions.

Identificador

Serdica Mathematical Journal, Vol. 22, No 3, (1996), 267p-292p

1310-6600

http://hdl.handle.net/10525/607

Idioma(s)

fr

Publicador

Institute of Mathematics and Informatics Bulgarian Academy of Sciences

Palavras-Chave #Opérateur Maximal Monotone #Convergence Au Sens Des Graphes #Convergence Au Sens De Mosco #Condition De Brézis-crandall and Pazy
Tipo

Article