965 resultados para language production
Resumo:
This article describes different perspectives in response to language change, and aligns the perspectives of language change to English language pedagogy in non-English speaking contexts. The Pre-Neogrammarian and Neo-grammarian linguists that believe the change leads to respectively language decay or language existence will be outlined. This article suggests that the theories derived from both perspectives can be applied to any language. Once there is cultural contact between languages, the dominant language tends to suppress the non-dominant language. Hence, besides focusing on changes that happen in English and the effects of the changes into this language, this article also considers that other language—in this case EFL teachers’ “local language”—experiences an adverse change as the result of the speakers’ interaction with English. Then, this article also describes how the changes might lead to EFL teachers’ adaptation in their practice and cause teachers’ dilemmas.
Resumo:
Conceptual combination performs a fundamental role in creating the broad range of compound phrases utilised in everyday language. While the systematicity and productivity of language provide a strong argument in favour of assuming compositionality, this very assumption is still regularly questioned in both cognitive science and philosophy. This article provides a novel probabilistic framework for assessing whether the semantics of conceptual combinations are compositional, and so can be considered as a function of the semantics of the constituent concepts, or not. Rather than adjudicating between different grades of compositionality, the framework presented here contributes formal methods for determining a clear dividing line between compositional and non-compositional semantics. Compositionality is equated with a joint probability distribution modelling how the constituent concepts in the combination are interpreted. Marginal selectivity is emphasised as a pivotal probabilistic constraint for the application of the Bell/CH and CHSH systems of inequalities (referred to collectively as Bell-type). Non-compositionality is then equated with either a failure of marginal selectivity, or, in the presence of marginal selectivity, with a violation of Bell-type inequalities. In both non-compositional scenarios, the conceptual combination cannot be modelled using a joint probability distribution with variables corresponding to the interpretation of the individual concepts. The framework is demonstrated by applying it to an empirical scenario of twenty-four non-lexicalised conceptual combinations.
Resumo:
The context in which objects are presented influences the speed at which they are named. We employed the blocked cyclic naming paradigm and perfusion functional magnetic resonance imaging (fMRI) to investigate the mechanisms responsible for interference effects reported for thematicallyand categorically related compared to unrelated contexts. Naming objects in categorically homogeneous contexts induced a significant interference effect that accumulated from the second cycle onwards. This interference effect was associated with significant perfusion signal decreases in left middle and posterior lateral temporal cortex and the hippocampus. By contrast, thematically homogeneous contexts facilitated naming latencies significantly in the first cycle and did not differ from heterogeneous contexts thereafter, nor were they associated with any perfusion signal changes compared to heterogeneous contexts. These results are interpreted as being consistent with an account in which the interference effect both originates and has its locus at the lexical level, with an incremental learning mechanism adapting the activation levels of target lexical representations following access. We discuss the implications of these findings for accounts that assume thematic relations can be active lexical competitors or assume mandatory involvement of top-down control mechanisms in interference effects during naming.
Resumo:
Studies of semantic context effects in spoken word production have typically distinguished between categorical (or taxonomic) and associative relations. However, associates tend to confound semantic features or morphological representations, such as whole-part relations and compounds (e.g., BOAT-anchor, BEE-hive). Using a picture-word interference paradigm and functional magnetic resonance imaging (fMRI), we manipulated categorical (COW-rat) and thematic (COW-pasture) TARGET-distractor relations in a balanced design, finding interference and facilitation effects on naming latencies, respectively, as well as differential patterns of brain activation compared with an unrelated distractor condition. While both types of distractor relation activated the middle portion of the left middle temporal gyrus (MTG) consistent with retrieval of conceptual or lexical representations, categorical relations involved additional activation of posterior left MTG, consistent with retrieval of a lexical cohort. Thematic relations involved additional activation of the left angular gyrus. These results converge with recent lesion evidence implicating the left inferior parietal lobe in processing thematic relations and may indicate a potential role for this region during spoken word production.
Resumo:
For most people, speech production is relatively effortless and error-free. Yet it has long been recognized that we need some type of control over what we are currently saying and what we plan to say. Precisely how we monitor our internal and external speech has been a topic of research interest for several decades. The predominant approach in psycholinguistics has assumed monitoring of both is accomplished via systems responsible for comprehending others' speech. This special topic aimed to broaden the field, firstly by examining proposals that speech production might also engage more general systems, such as those involved in action monitoring. A second aim was to examine proposals for a production-specific, internal monitor. Both aims require that we also specify the nature of the representations subject to monitoring.
Resumo:
Objects presented in categorically related contexts are typically named slower than objects presented in unrelated contexts, a phenomenon termed semantic interference. However, not all semantic relationships induce interference. In the present study, we investigated the influence of object part-relations in the blocked cyclic naming paradigm. In Experiment 1 we established that an object's parts do induce a semantic interference effect when named in context compared to unrelated parts (e.g., leaf, root, nut, bark; for tree). In Experiment 2) we replicated the effect during perfusion functional magnetic resonance imaging (fMRI) to identify the cerebral regions involved. The interference effect was associated with significant perfusion signal increases in the hippocampal formation and decreases in the dorsolateral prefrontal cortex. We failed to observe significant perfusion signal changes in the left lateral temporal lobe, a region that shows reliable activity for interference effects induced by categorical relations in the same paradigm and is proposed to mediate lexical-semantic processing. We interpret these results as supporting recent explanations of semantic interference in blocked cyclic naming that implicate working memory mechanisms. However, given the failure to observe significant perfusion signal changes in the left temporal lobe, the results provide only partial support for accounts that assume semantic interference in this paradigm arises solely due to lexical-level processes.
Resumo:
This article contributes to the theorization of the role of informal regulation (undertaken by leading firms) in the ongoing organization of global production networks. It does so through a qualitative case study of BHP Billiton's Ravensthorpe Nickel Operation (RNO) in the rural Shire of Ravensthorpe in Western Australia. This less tangible, and to date under-researched, dimension of global production networks is foregrounded through a focus on the corporate social responsibility strategy implemented by RNO in the service of achieving and/or demonstrating a broader ‘social licence to operate’. This ‘licence’ functions – beyond the corporation – as a legitimated and legitimating multi-scalar mechanism through which to gain and maintain access to mineral resources and thus to establish viable and ongoing global production networks. Further, this informal regulation is shown to shape social relations and qualities of place conducive to competitive global mineral extraction and to facilitate the positioning of local communities and places in mineral global production networks.
Resumo:
As oil use increases at a rate unsustainable for the environment and unmatchable by current levels of oil production, a major shift towards renewable energy is necessary. By expanding the current knowledge of lignin biosynthesis and its manipulation in sugarcane, this PhD contributes to the production of economically viable second generation bioethanol, a fuel produced from plant biomass. The findings of this thesis contribute to the limited knowledge of lignin biosynthesis and deposition in sugarcane, and the application of biotechnology to produce sugarcane, and the resulting bagasse, with a modified cell wall. Reducing or modifying the lignin content in the cell wall of bagasse can reduce production costs and increase yields of bioethanol. This makes bioethanol more economically competitive with oil as an alternative energy source. A move to using bioethanol over fossil based transport fuels will have global economic and environmental benefits.
Resumo:
This project aimed to identify current Language Literacy and Numeracy (LLN) and Inclusive Teaching and Learning Practices in a TAFE Diploma of Nursing (Enrolled/Division 2 Nursing). The key purpose of the study was to make recommendations for improving inclusive teaching practice and learning outcomes of students and for reducing student attrition, thereby increasing the employability of graduates in the health industry subsequent to course completion.
Resumo:
Although a substantial amount of cross-cultural psychology research has investigated acculturative stress in general, little attention has been devoted specifically to communication-related acculturative stress (CRAS). In line with the view that cross-cultural adaptation and second language (L2) learning are social and interpersonal phenomena, the present study examines the hypothesis that migrants’ L2 social network size and interconnectedness predict CRAS. The main idea underlying this hypothesis is that L2 social networks play an important role in fostering social and cultural aspects of communicative competence. Specifically, higher interconnectedness may reflect greater access to unmodified natural cultural representations and L2 communication practices, thus fostering communicative competence through observational learning. As such, structural aspects of migrants’ L2 social networks may be protective against acculturative stress arising from chronic communication difficulties. Results from a study of first generation migrant students (N = 100) support this idea by showing that both inclusiveness and density of the participants’ L2 network account for unique variance in CRAS but not in general acculturative stress. These results support the idea that research on cross-cultural adaptation would benefit from disentangling the various facets of acculturative stress and that the structure of migrants’ L2 network matters for language related outcomes. Finally, this study contributes to an emerging body of work that attempts to integrate cultural/cross-cultural research on acculturation and research on intercultural communication and second language learning.
Resumo:
The use of nitrification inhibitors, in combination with ammonium based fertilisers, has been promoted recently as an effective method to reduce nitrous oxide (N2O) emissions from fertilised agricultural fields, whilst increasing yield and nitrogen use efficiency. Vegetable cropping systems are often characterised by high inputs of nitrogen fertiliser and consequently elevated emissions of nitrous oxide (N2O) can be expected. However, to date only limited data is available on the use of nitrification inhibitors in sub-tropical vegetable systems. A field experiment investigated the effect of the nitrification inhibitors (DMPP & 3MP+TZ) on N2O emissions and yield from a typical vegetable production system in sub-tropical Australia. Soil N2O fluxes were monitored continuously over an entire year with a fully automated system. Measurements were taken from three subplots for each treatment within a randomized complete blocks design. There was a significant inhibition effect of DMPP and 3MP+TZ on N2O emissions and soil mineral N content directly following the application of the fertiliser over the vegetable cropping phase. However this mitigation was offset by elevated N2O emissions from the inhibitor treatments over the post-harvest fallow period. Cumulative annual N2O emissions amounted to 1.22 kg-N/ha, 1.16 kg-N/ha, 1.50 kg-N/ha and 0.86 kg-N/ha in the conventional fertiliser (CONV), the DMPP treatment, the 3MP+TZ treatment and the zero fertiliser (0N) respectively. Corresponding fertiliser induced emission factors (EFs) were low with only 0.09 - 0.20% of the total applied fertiliser lost as N2O. There was no significant effect of the nitrification inhibitors on yield compared to the CONV treatment for the three vegetable crops (green beans, broccoli, lettuce) grown over the experimental period. This study highlights that N2O emissions from such vegetable cropping system are primarily controlled by post-harvest emissions following the incorporation of vegetable crop residues into the soil. It also shows that the use of nitrification inhibitors can lead to elevated N2O emissions by storing N in the soil profile that is available to soil microbes during the decomposition of the vegetable residues over the post-harvest phase. Hence the use of nitrification inhibitors in vegetable systems has to be treated carefully and fertiliser rates need to be adjusted to avoid excess soil nitrogen during the postharvest phase.
Resumo:
In life cycle assessment studies, greenhouse gas (GHG) emissions from direct land-use change have been estimated to make a significant contribution to the global warming potential of agricultural products. However, these estimates have a high uncertainty due to the complexity of data requirements and difficulty in attribution of land-use change. This paper presents estimates of GHG emissions from direct land-use change from native woodland to grazing land for two beef production regions in eastern Australia, which were the subject of a multi-impact life cycle assessment study for premium beef production. Spatially- and temporally consistent datasets were derived for areas of forest cover and biomass carbon stocks using published remotely sensed tree-cover data and regionally applicable allometric equations consistent with Australia's national GHG inventory report. Standard life cycle assessment methodology was used to estimate GHG emissions and removals from direct land-use change attributed to beef production. For the northern-central New South Wales region of Australia estimates ranged from a net emission of 0.03 t CO2-e ha-1 year-1 to net removal of 0.12 t CO2-e ha-1 year-1 using low and high scenarios, respectively, for sequestration in regrowing forests. For the same period (1990-2010), the study region in southern-central Queensland was estimated to have net emissions from land-use change in the range of 0.45-0.25 t CO2-e ha-1 year-1. The difference between regions reflects continuation of higher rates of deforestation in Queensland until strict regulation in 2006 whereas native vegetation protection laws were introduced earlier in New South Wales. On the basis of liveweight produced at the farm-gate, emissions from direct land-use change for 1990-2010 were comparable in magnitude to those from other on-farm sources, which were dominated by enteric methane. However, calculation of land-use change impacts for the Queensland region for a period starting 2006, gave a range from net emissions of 0.11 t CO2-e ha-1 year-1 to net removals of 0.07 t CO2-e ha-1 year-1. This study demonstrated a method for deriving spatially- and temporally consistent datasets to improve estimates for direct land-use change impacts in life cycle assessment. It identified areas of uncertainty, including rates of sequestration in woody regrowth and impacts of land-use change on soil carbon stocks in grazed woodlands, but also showed the potential for direct land-use change to represent a net sink for GHG.
Resumo:
Humans dominate many important Earth system processes including the nitrogen (N) cycle. Atmospheric N deposition affects fundamental processes such as carbon cycling, climate regulation, and biodiversity, and could result in changes to fundamental Earth system processes such as primary production. Both modelling and experimentation have suggested a role for anthropogenically altered N deposition in increasing productivity, nevertheless, current understanding of the relative strength of N deposition with respect to other controls on production such as edaphic conditions and climate is limited. Here we use an international multiscale data set to show that atmospheric N deposition is positively correlated to aboveground net primary production (ANPP) observed at the 1-m2 level across a wide range of herbaceous ecosystems. N deposition was a better predictor than climatic drivers and local soil conditions, explaining 16% of observed variation in ANPP globally with an increase of 1 kg N·ha-1·yr-1 increasing ANPP by 3%. Soil pH explained 8% of observed variation in ANPP while climatic drivers showed no significant relationship. Our results illustrate that the incorporation of global N deposition patterns in Earth system models are likely to substantially improve estimates of primary production in herbaceous systems. In herbaceous systems across the world, humans appear to be partially driving local ANPP through impacts on the N cycle.
Resumo:
In this work we discuss the development of a mathematical model to predict the shift in gas composition observed over time from a producing CSG (coal seam gas) well, and investigate the effect that physical properties of the coal seam have on gas production. A detailed (local) one-dimensional, two-scale mathematical model of a coal seam has been developed. The model describes the competitive adsorption and desorption of three gas species (CH4, CO2 and N2) within a microscopic, porous coal matrix structure. The (diffusive) flux of these gases between the coal matrices (microscale) and a cleat network (macroscale) is accounted for in the model. The cleat network is modelled as a one-dimensional, volume averaged, porous domain that extends radially from a central well. Diffusive and advective transport of the gases occurs within the cleat network, which also contains liquid water that can be advectively transported. The water and gas phases are assumed to be immiscible. The driving force for the advection in the gas and liquid phases is taken to be a pressure gradient with capillarity also accounted for. In addition, the relative permeabilities of the water and gas phases are considered as functions of the degree of water saturation.