931 resultados para heat shock response


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Perinatal asphyxia is an important cause of mortality and permanent neurological and developmental deficit. Early and accurate diagnosis would help to establish the likely prognosis and may also help in determining the most appropriate treatment. Studies in experimental animal models suggest that a protein called Hsp70 may be a good and potentially useful marker of cellular stress that may be clinically useful in determining the presence of neonatal asphyxia. Objectives: Regarding the importance of early and accurate diagnosis of asphyxia, we conducted this study, which is the first investigation of the comparison of the serum Hsp70 antigen level between asphyxiated and healthy infants. Patients and Methods: In this observational study, the serum concentrations of Hsp70 antigen were compared between neonates suffering from perinatal asphyxia (n = 50) and normal neonates (n = 51). The inclusion criteria for the cases were neonates who had reached term and had at least two clinical criteria of asphyxia. Exclusion criteria were babies with gestational age < 37 weeks, infants with congenital abnormalities or positive blood culture. Exclusion criteria in this group were the requirement to hospital stay during first week of the life or babies whose mothers had difficulties during pregnancy or delivery. Term neonates without major anomalies who had asphyxia during delivery were enrolled in the first six hours after delivery, and control group consisted of healthy term neonates without problems and normal delivery process in the first week of life. The cord blood was taken during labor to measure Hsp70 antigen level by using an in-house ELISA (The enzyme-linked immunosorbent assay). Results: The median values of serum anti Hsp70 titers were significantly higher in asphyxiated neonates compared with non-asphyxiated neonates (0.36 [0.04 - 1.14] vs 0.24 [0.01 - 0.63]). At cutoff point = 0.3125 ng/mL, sensitivity was 58% and specificity 76% based on ROC curve. Conclusions: A significant difference between the serum concentrations of Hsp70 of the control and patient group was observed in this study. It is inferred serum concentrations of Hsp70 antigen may be a useful marker for the early diagnosis of that prenatal hypoxia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nitrogen-fixing bacterium Sinorhizobium meliloti must adapt to diverse conditions encountered during its symbiosis with leguminous plants. We characterized a new symbiotically relevant gene, emrR (SMc03169), whose product belongs to the TetR family of repressors and is divergently transcribed from emrAB genes encoding a putative major facilitator superfamily-type efflux pump. An emrR deletion mutant produced more succinoglycan, displayed increased cell-wall permeability, and exhibited higher tolerance to heat shock. It also showed lower tolerance to acidic conditions, a reduced production of siderophores, and lower motility and biofilm formation. The simultaneous deletion of emrA and emrR genes restored the mentioned traits to the wild-type phenotype, except for survival under heat shock, which was lower than that displayed by the wild-type strain. Furthermore, the ΔemrR mutant as well as the double ΔemrAR mutant was impaired in symbiosis with Medicago sativa; it formed fewer nodules and competed poorly with the wild-type strain for nodule colonization. Expression profiling of the ΔemrR mutant showed decreased expression of genes involved in Nod-factor and rhizobactin biosynthesis and in stress responses. Expression of genes directing the biosynthesis of succinoglycan and other polysaccharides were increased. EmrR may therefore be involved in a regulatory network targeting membrane and cell wall modifications in preparation for colonization of root hairs during symbiosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tese de Doutoramento, Ecologia (Ecologia das Populações), Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study examines the importance of thermal refugia along the majority of the geographical range of a key inter- tidal species (Patella vulgata Linnaeus, 1758) on the Atlantic coast of Europe. We asked whether differences between sun-exposed and shaded microhabitats were responsible for differences in physiological stress and ecological perfor- mance and examined the availability of refugia near equatorial range limits. Thermal differences between sun- exposed and shaded microhabitats are consistently associated with differences in physiological performance, and the frequency of occurrence of high temperatures is most probably limiting the maximum population densities sup- ported at any given place. Topographical complexity provides thermal refugia throughout most of the distribution range, although towards the equatorial edges the magnitude of the amelioration provided by shaded microhabitats is largely reduced. Importantly, the limiting effects of temperature, rather than being related to latitude, seem to be tightly associated with microsite variability, which therefore is likely to have profound effects on the way local popu- lations (and consequently species) respond to climatic changes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Esta tese é relacionada ao estudo funcional de um gene que codifica um fator de elongação LeEF-Tsmt em tomate. Este gene participa no processo de síntese de proteína em mitocôndrias e apresenta uma forte expressão durante o processo de maturação quando comparado a outros órgãos. Nós demonstramos que o mesmo se exprime fortemente durante as primeiras fases do processo maturação em paralelo com a crise respiratória climatérica e que sua expressão é estimulada pelo etileno, ferimento e altas temperaturas. Porém, os mutantes de tomate insensíveis ao etileno, exibem uma expressão normal. Frutos transgênicos foram gerados, nos quais o LeEF-Tsmt foi aumentado ou inibido de uma forma constitutiva. Porém, a alteração da expressão do gene através da transformação genética com construções sentido e antisense do gene LeEF-Tsmt não afeta o padrão de respiração e produção de etileno durante a maturação e após o ferimento. Além disso, a expressão do gene da alternativa oxidase, que é conhecida por apresentar um papel importante no climatério respiratório, não foi afetada. Todos estes dados indicam que apesar de sua forte regulação, o LeEF-Tsmt não é limitante da atividade respiratória mitocondrial. A expressão do gene de LeEF-Tsmt é estimulada pelo efeito do estresse oxidativo induzido nas partes vegetativas da planta pela seca e o paraquat. A sensibilidade ao estresse oxidativo avaliado em folhas pela presença de necrose e em calos através de crescimento celular, foi reduzido em plantas antisentido. Entre as enzimas conhecidas por apresentar um papel na detoxificação de espécies reativas de oxigênio, superóxido dismutase (SOD), catalases (CAT), peroxidase (PX) e glutation redutase (GR), nós demostramos que a GR e PX exibem atividade mais alta em linhas antisentido, explicando assim, pelo menos em parte, sua melhor tolerância ao estresse. O papel da proteína de LeEF-Tsmt na síntese de proteínas mitocondriais foi estudado pela análise do proteôma mitocondrial em linhas antisentido e sentido do gene LeEF-Tsmt. A comparação dos proteômas de linhas transformadas e selvagem foi tratado com a ajuda de uma técnica de dupla marcagem 14N/15N aplicadas à tecidos de tomate cultivados in vitro. A linha sentido super expressa fortemente a proteína, enquanto que as linhas antisentidos diminuem ligeiramente. Uma proteína do tipo ?heat-shock? segue as variações da proteína LeEF-Tsmt, sugerindo um possível papel chaperona. Uma análise global do proteôma mitocondrial foi executada, fornecendo novas informações sobre um conjunto de ao redor 500 proteínas mitocondriais de tomate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the major causes of ?Fuyu? persimmon loss after cold storage (CS) is the breakdown of its flesh, which results in the production of a translucent fruit (a water-soaked fruit). It is believed that the cause of this disturbance is linked to disorganization of the cytoskelet and endomembrane system, which changes the synthesis and transport of proteins and metabolites, resulting in incomplete ripening. To test this hypothesis, ?Fuyu? persimmon was subjected to three different postharvest treatments (T): Control ? harvested and kept at 23±3 ◦C and relative humidity (RH) of 85±5% (room temperature, RT) for 12 days, T1 ? harvested and kept under cold storage (CS) (1±1 ◦C and RH of 85±5%) for 30 days followed by RT storage for 2 days, T2 ? kept under RT for 2 days (acclimatization) followed by CS for 30 days. Control and T2 resulted in fruit with decreased flesh firmness (FF), and increased soluble solids (SS) and ascorbic acid (AA) contents. In these fruit the activity of endo-1,4-ß-glucanase (endo-1,4-ß-gluc), pectin methylesterase (PME), polygalacturonase (PG) and ß-galactosidase (ß-gal) increased. T1 resulted in translucent fruit with decreased FF, without any enzymatic activity changes, probably due to the physical disruption of the cytoskeleton. Further, there was an increased content of proteins corresponding to expansins in fruit kept under Control and T2 conditions, which suggests that these conditions do contribute to the synthesis and/or transport of proteins involved in the process of solubilization of the cell wall. In these fruit, there was also a major accumulation of gene transcripts corresponding to heat shock proteins (HSPs) of organelles related to endomembrane, which suggests participation of these genes in the prevention of damage caused by cold conditions. These data proved the hypotheses that acclimatization contributes to the expression of HSPs, and synthesis and transportat of proteins involved in the solubilization of the cell wall. The expression of these genes results in the normal ripening of the persimmon, as confirmed by the evolution of ethylene production.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To assess the effects of pre-cooling volume on neuromuscular function and performance in free-paced intermittent-sprint exercise in the heat. Methods: Ten male, teamsport athletes completed four randomized trials involving an 85-min free-paced intermittentsprint exercise protocol in 33°C±33% relative humidity. Pre-cooling sessions included whole body (WB), head+hand (HH), head (H) and no cooling (CONT), applied for 20-min pre-exercise and 5-min mid exercise. Maximal voluntary contractions (MVC) were assessed pre- and postintervention and mid- and post-exercise. Exercise performance was assessed with sprint times, % decline and distances covered during free-paced bouts. Measures of core(Tc) and skin (Tsk) temperatures, heart rate, perceptual exertion and thermal stress were monitored throughout. Venous and capillary blood was analyzed for metabolite, muscle damage and inflammatory markers. Results: WB pre-cooling facilitated the maintenance of sprint times during the exercise protocol with reduced % decline (P=0.04). Mean and total hard running distances increased with pre cooling 12% compared to CONT (P<0.05), specifically, WB was 6-7% greater than HH (P=0.02) and H (P=0.001) respectively. No change was evident in mean voluntary or evoked force pre- to post-exercise with WB and HH cooling (P>0.05). WB and HH cooling reduced Tc by 0.1-0.3°C compared to other conditions (P<0.05). WB Tsk was suppressed for the entire session(P=0.001). HR responses following WB cooling were reduced(P=0.05; d=1.07) compared to CONT conditions during exercise. Conclusion: A relationship between pre-cooling volume and exercise performance seems apparent, as larger surface area coverage augmented subsequent free-paced exercise capacity, in conjunction with greater suppression of physiological load. Maintenance of MVC with pre-cooling, despite increased work output suggests the role of centrally-mediated mechanisms in exercise pacing regulation and subsequent performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study examined the effects of pre-cooling duration on performance and neuromuscular function for self-paced intermittent-sprint shuttle running in the heat. Eight male, team-sport athletes completed two 35-min bouts of intermittent-sprint shuttle running separated by a 15-min recovery on three separate occasions (33°C, 34% relative humidity). Mixed-method pre-cooling was completed for 20 min (COOL20), 10-min (COOL10) or no cooling (CONT) and reapplied for 5-min mid-exercise. Performance was assessed via sprint times, percentage decline and shuttle-running distance covered. Maximal voluntary contractions (MVC), voluntary activation (VA) and evoked twitch properties were recorded pre- and post-intervention and mid- and post-exercise. Core temperature (T c), skin temperature, heart rate, capillary blood metabolites, sweat losses, perceptual exertion and thermal stress were monitored throughout. Venous blood draws pre- and post-exercise were analyzed for muscle damage and inflammation markers. Shuttle-running distances covered were increased 5.2 ± 3.3% following COOL20 (P < 0.05), with no differences observed between COOL10 and CONT (P > 0.05). COOL20 aided in the maintenance of mid- and post-exercise MVC (P < 0.05; d > 0.80), despite no conditional differences in VA (P > 0.05). Pre-exercise T c was reduced by 0.15 ± 0.13°C with COOL20 (P < 0.05; d > 1.10), and remained lower throughout both COOL20 and COOL10 compared to CONT (P < 0.05; d > 0.80). Pre-cooling reduced sweat losses by 0.4 ± 0.3 kg (P < 0.02; d > 1.15), with COOL20 0.2 ± 0.4 kg less than COOL10 (P = 0.19; d = 1.01). Increased pre-cooling duration lowered physiological demands during exercise heat stress and facilitated the maintenance of self-paced intermittent-sprint performance in the heat. Importantly, the dose-response interaction of pre-cooling and sustained neuromuscular responses may explain the improved exercise performance in hot conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this note, the application of dual-phase damping to a simple shock mount experiencing a harmonic input is described. The damping ratio is a function of the relative displacement between the foundation and the mounted mass. The purpose of employing such a damping is to reduce the absolute transmissibility over the whole frequency range.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Measurements of both the velocity and the temperature field have been made in the thermal layer that grows inside a turbulent boundary layer which is subjected to a small step change in surface heat flux. Upstream of the step, the wall heat flux is zero and the velocity boundary layer is nearly self-preserving. The thermal-layer measurements are discussed in the context of a self-preserving analysis for the temperature disturbance which grows underneath a thick external turbulent boundary layer. A logarithmic mean temperature profile is established downstream of the step but the budget for the mean-square temperature fluctuations shows that, in the inner region of the thermal layer, the production and dissipation of temperature fluctuations are not quite equal at the furthest downstream measurement station. The measurements for both the mean and the fluctuating temperature field indicate that the relaxation distance for the thermal layer is quite large, of the order of 1000θ0, where θ0 is the momentum thickness of the boundary layer at the step. Statistics of the thermal-layer interface and conditionally sampled measurements with respect to this interface are presented. Measurements of the temperature intermittency factor indicate that the interface is normally distributed with respect to its mean position. Near the step, the passive heat contaminant acts as an effective marker of the organized turbulence structure that has been observed in the wall region of a boundary layer. Accordingly, conditional averages of Reynolds stresses and heat fluxes measured in the heated part of the flow are considerably larger than the conventional averages when the temperature intermittency factor is small.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Buoy and satellite data show pronounced subseasonal oscillations of sea surface temperature (SST) in the summertime Bay of Bengal. The SST oscillations are forced mainly by surface heat flux associated with the active break cycle of the south Asian summer monsoon. The input of freshwater (FW) from summer rain and rivers to the bay is large, but not much is known about subseasonal salinity variability. We use 2002-2007 observations from three Argo floats with 5 day repeat cycle to study the subseasonal response of temperature and salinity to surface heat and freshwater flux in the central Bay of Bengal. About 95% of Argo profiles show a shallow halocline, with substantial variability of mixed layer salinity. Estimates of surface heat and freshwater flux are based on daily satellite data sampled along the float trajectory. We find that intraseasonal variability of mixed layer temperature is mainly a response to net surface heat flux minus penetrative radiation during the summer monsoon season. In winter and spring, however, temperature variability appears to be mainly due to lateral advection rather than local heat flux. Variability of mixed layer freshwater content is generally independent of local surface flux (precipitation minus evaporation) in all seasons. There are occasions when intense monsoon rainfall leads to local freshening, but these are rare. Large fluctuations in FW appear to be due to advection, suggesting that freshwater from rivers and rain moves in eddies or filaments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aerodynamic forces and fore-body convective surface heat transfer rates over a 60 degrees apex-angle blunt cone have been simultaneously measured at a nominal Mach number of 5.75 in the hypersonic shock tunnel HST2. An aluminum model incorporating a three-component accelerometer-based balance system for measuring the aerodynamic forces and an array of platinum thin-film gauges deposited on thermally insulating backing material flush mounted on the model surface is used for convective surface heat transfer measurement in the investigations. The measured value of the drag coefficient varies by about +/-6% from the theoretically estimated value based on the modified Newtonian theory, while the axi-symmetric Navier-Stokes computations overpredict the drag coefficient by about 9%. The normalized values of measured heat transfer rates at 0 degrees angle of attack are about 11% higher than the theoretically estimated values. The aerodynamic and the heat transfer data presented here are very valuable for the validation of CFD codes used for the numerical computation of How fields around hypersonic vehicles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Land use and land cover changes affect the partitioning of latent and sensible heat, which impacts the broader climate system. Increased latent heat flux to the atmosphere has a local cooling influence known as `evaporative cooling', but this energy will be released back to the atmosphere wherever the water condenses. However, the extent to which local evaporative cooling provides a global cooling influence has not been well characterized. Here, we perform a highly idealized set of climate model simulations aimed at understanding the effects that changes in the balance between surface sensible and latent heating have on the global climate system. We find that globally adding a uniform 1 W m(-2) source of latent heat flux along with a uniform 1 W m(-2) sink of sensible heat leads to a decrease in global mean surface air temperature of 0.54 +/- 0.04 K. This occurs largely as a consequence of planetary albedo increases associated with an increase in low elevation cloudiness caused by increased evaporation. Thus, our model results indicate that, on average, when latent heating replaces sensible heating, global, and not merely local, surface temperatures decrease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, a detailed investigation on the effect of heat treatment on the microstructural characteristics, texture evolution and mechanical properties of Mg-(5.6Ti+2.5B(4)C)(BM) hybrid nanocomposite is presented. Optimised heat treatment parameters, namely, heat treatment temperature and heat treatment time, were first identified through grain size and microhardness measurements. Initially, heat treatment of composites was conducted at temperature range between 100 and 300 degrees C for 1 h. Based on optical microscopic analysis and microhardness measurements, it was evident that significant grain growth and reduction in microhardness occurred for temperatures > 200 degrees C. The cutoff temperature that caused significant grain growth/matrix softening was thus identified. Second, at constant temperature (200 degrees C), the effect of variation of heat treatment time was carried out (ranging between 1 and 5 h) so as to identify the range wherein increase in average grain size and reduction in microhardness occurred. Furthering the study, the effect of optimised heat treatment parameters (200 degrees C, 5 h) on the microstructural texture evolution and hence, on the tensile and compressive properties of the Mg-(5.6Ti+2.5B(4)C)(BM) hybrid nanocomposite was carried out. From electron backscattered diffraction (EBSD) analysis, it was identified that the optimised heat treatment resulted in recrystallisation and residual stress relaxation, as evident from the presence of similar to 87% strain free grains, when compared to that observed in the non-heat treated/as extruded condition (i.e. 2.2 times greater than in the as extruded condition). For the heat treated composite, under both tensile and compressive loads, a significant improvement in fracture strain values (similar to 60% increase) was observed when compared to that of the non-heat treated counterpart, with similar to 20% reduction in yield strength. Based on structure-property correlation, the change in mechanical characteristics is identified to be due to: (1) the presence of less stressed matrix/reinforcement interface due to the relief of residual stresses and (2) texture weakening due to matrix recrystallisation effects, both arising due to heat treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Different types of Large Carbon Cluster (LCC) layers are synthesized by a single-step pyrolysis technique at various ratios of precursor mixture. The aim is to develop a fast responsive and stable thermal gauge based on a LCC layer which has relatively good electrical conduction in order to use it in the hypersonic flow field. The thermoelectric property of the LCC layer has been studied. It is found that these carbon clusters are sensitive to temperature changes. Therefore suitable thermal gauges were developed for blunt cone bodies and were tested in hypersonic shock tunnels at a flow Mach number of 6.8 to measure aerodynamic heating. The LCC layer of this thermal gauge encounters high shear forces and a hostile environment for test duration in the range of a millisecond. The results are favorable to use large carbon clusters as a better sensor than a conventional platinum thin film gauge in view of fast responsiveness and stability.