958 resultados para genetic divergence
Resumo:
The common blacktip shark (Carcharhinus limbatus) and the Australian blacktip shark (C. tilstoni) are morphologically similar species that co-occur in subtropical and tropical Australia. In striking contrast to what has been previously reported, we demonstrate that the common blacktip shark is not rare in northern Australia but occurs in approximately equal frequencies with the Australian blacktip shark. Management of shark resources in northern Australia needs to take account of this new information. Species identification was performed using nucleotide sequences of the control, NADH dehydrogenase subunit 4 (ND4) and cytochrome oxidase I (COI) regions in the mitochondrial genome. The proportion of overall genetic variation (FST) between the two species was small (0.042, P < 0.01) based on allele frequencies at five microsatellite loci. We confirm that a third blacktip species (C. amblyrhynchoides, graceful shark) is closely related to C. tilstoni and C. limbatus and can be distinguished from them on the basis of mtDNA sequences from two gene regions. The Australian blacktip shark (C. tilstoni) was not encountered among 20 samples from central Indonesia that were later confirmed to be common blacktip and graceful sharks. Fisheries regulators urgently need new information on life history, population structure and morphological characters for species identification of blacktip shark species in Australia.
Resumo:
Mitochondrial DNA D-loop (control) region (426-bp) was used to infer the genetic structure of Spanish mackerel (Scomberomorus commerson) from populations in Southeast Asia (Brunei, East and West Malaysia, Philippines, Thailand, Singapore, and China) and northern Australia (including western Timor). An east–west division along Wallace’s Line was strongly supported by a significant AMOVA, with 43% of the total sequence variation partitioned among groups of populations. Phylogenetic and network analyses supported two clades: clade A and clade B. Members of clade A were found in Southeast Asia and northern Australia, but not in locations to the west (Gulf of Thailand) or north (China). Clade B was found exclusively in Southeast Asia. Genetic division along Wallace’s Line suggests that co-management of S. commerson populations for future sustainability may not be necessary between Southeast Asian nations and Australia, however all countries should share the task of management of the species in Southeast Asia equally. More detailed genetic studies of S. commerson populations in the region are warranted.
Resumo:
The Indo-West Pacific (IWP), from South Africa in the western Indian Ocean to the western Pacific Ocean, contains some of the most biologically diverse marine habitats on earth, including the greatest biodiversity of chondrichthyan fishes. The region encompasses various densities of human habitation leading to contrasts in the levels of exploitation experienced by chondrichthyans, which are targeted for local consumption and export. The demersal chondrichthyan, the zebra shark, Stegostoma fasciatum, is endemic to the IWP and has two current regional International Union for the Conservation of Nature (IUCN) Red List classifications that reflect differing levels of exploitation: ‘Least Concern’ and ‘Vulnerable’. In this study, we employed mitochondrial ND4 sequence data and 13 microsatellite loci to investigate the population genetic structure of 180 zebra sharks from 13 locations throughout the IWP to test the concordance of IUCN zones with demographic units that have conservation value. Mitochondrial and microsatellite data sets from samples collected throughout northern Australia and Southeast Asia concord with the regional IUCN classifications. However, we found evidence of genetic subdivision within these regions, including subdivision between locations connected by habitat suitable for migration. Furthermore, parametric FST analyses and Bayesian clustering analyses indicated that the primary genetic break within the IWP is not represented by the IUCN classifications but rather is congruent with the Indonesian throughflow current. Our findings indicate that recruitment to areas of high exploitation from nearby healthy populations in zebra sharks is likely to be minimal, and that severe localized depletions are predicted to occur in zebra shark populations throughout the IWP region.
Resumo:
Background: The territorial fishing zones of Australia and Indonesia are contiguous to the north of Australia in the Timor and Arafura Seas and in the Indian Ocean to the north of Christmas Island. The area surrounding the shared boundary consists of a variety of bio-diverse marine habitats including shallow continental shelf waters, oceanic trenches and numerous offshore islands. Both countries exploit a variety of fisheries species, including whaler (Carcharhinus spp.) and hammerhead sharks (Sphyrna spp.). Despite their differences in social and financial arrangements, the two countries are motivated to develop complementary co-management practices to achieve resource sustainability. An essential starting point is knowledge of the degree of population subdivision, and hence fisheries stock status, in exploited species. Results: Populations of four commercially harvested shark species (Carcharhinus obscurus, Carcharhinus sorrah, Prionace glauca, Sphyrna lewini) were sampled from northern Australia and central Indonesia. Neutral genetic markers (mitochondrial DNA control region sequence and allelic variation at co-dominant microsatellite loci) revealed genetic subdivision between Australian and Indonesian populations of C. sorrah. Further research is needed to address the possibility of genetic subdivision among C. obscurus populations. There was no evidence of genetic subdivision for P. glauca and S. lewini populations, but the sampling represented a relatively small part of their distributional range. For these species, more detailed analyses of population genetic structure is recommended in the future. Conclusion: Cooperative management between Australia and Indonesia is the best option at present for P. glauca and S. lewini, while C. sorrah and C. obscurus should be managed independently. On-going research on these and other exploited shark and ray species is strongly recommended. Biological and ecological similarity between species may not be a predictor of population genetic structure, so species-specific studies are recommended to provide new data to assist with sustainable fisheries management.
Resumo:
Metabolites are small molecules involved in cellular metabolism, which can be detected in biological samples using metabolomic techniques. Here we present the results of genome-wide association and meta-analyses for variation in the blood serum levels of 129 metabolites as measured by the Biocrates metabolomic platform. In a discovery sample of 7,478 individuals of European descent, we find 4,068 genome- and metabolome-wide significant (Z-test, P<1.09 × 10−9) associations between single-nucleotide polymorphisms (SNPs) and metabolites, involving 59 independent SNPs and 85 metabolites. Five of the fifty-nine independent SNPs are new for serum metabolite levels, and were followed-up for replication in an independent sample (N=1,182). The novel SNPs are located in or near genes encoding metabolite transporter proteins or enzymes (SLC22A16, ARG1, AGPS and ACSL1) that have demonstrated biomedical or pharmaceutical importance. The further characterization of genetic influences on metabolic phenotypes is important for progress in biological and medical research.
Resumo:
Northern Australia is considered to be one of the last strongholds for three critically endangered sawfishes, Pristis zijsron, Pristis clavata, and Pristis microdon, making these populations of global significance. Population structure and levels of genetic diversity were assessed for each species across northern Australia using a portion of the mitochondrial control region. Statistically significant genetic structure was detected in all three species, although it was higher in P. microdon (F-ST = 0.811; N = 149) than in either P. clavata (F-ST = 0.419; N = 73) or P. zijsron (F-ST = 0.202; N = 49), possibly due to a much higher and/or localized level of female philopatry in P. microdon. The overall levels of haplotype diversity in P. zijsron (h = 0.555), P. clavata (h = 0.489), and P. microdon (h = 0.650) were moderate, although it appears to be reduced in the assemblages of P. zijsron and P. clavata in the Gulf of Carpentaria (h = 0.342 and h = 0.083, respectively). Since female migration (replenishment) between regions is unlikely, conservation plans should strive to maintain current levels of diversity and abundances in the regional assemblages of each species.
Resumo:
Colorectal cancer is one of the three most common cancers today, for both men and women. Approximately 90% of the cases are sporadic while the remaining 10% is hereditary. Among this 10% is hereditary nonpolyposis colorectal cancer (HNPCC), an autosomal dominant disease, accounting for up to 13% of these cases. HNPCC is associated with germline mutations in four mismatch repair (MMR) genes, MLH1, MSH2, MSH6, and PMS2, and is characterized by a familial accumulation of endometrial, gastric, urological, and ovarian tumors, in addition to colorectal cancer. An important etiological characteristic of HNPCC is the presence of microsatellite instability (MSI), caused by mutations of the MMR genes. Approximately 15% of sporadic cases share the MSI+ trait. Colon cancer is believed to be a consequence of an accumulation of mutations in tumor suppressor genes and oncogenes, eventually resulting in tumor development. This phenomena is accelerated in HNPCC due the presence of an inherited mutation in the MMR genes, accounting for one of the two hits proposed to be needed by Knudson (1971) in order for the manifestation of the MSI phenotype. MMR alterations alone, however, do not occur in the majority of sporadic colon cancers, prompting searches for other mechanisms. One such mechanism found to play a role in colon cancer development was DNA methylation, which is known to play a role in MLH1 inactivation. Our objective was clarification of mechanisms associated with tumor development in both HNPCC and sporadic colorectal cancer in relation to tumorigenic mechanisms. Of particular interest were underlying mechanisms of MSI in sporadic colorectal cancers, with attention to DNA methylation changes and their correlation to MSI. Of additional interest were the genetic and epigenetic events leading to the HNPCC tumor spectrum, chiefly colon and endometrial cancers, in regards to what extent the somatic changes in target tissue explained this phenomenon. We made a number of important findings pertaining to these questions. First, MSI tumor development differs epigenetically from stable tumor development, possibly underlying developmental pathway differences. Additionally, while epigenetic modification, principally DNA methylation, is a major mechanism in sporadic MSI colorectal cancer MLH1 inactivation it does not play a significant role in HNPCC tumors with germline MLH1 mutations. This is possibly an explanation for tumorigenic pathways and clinicopathological characteristic differences between sporadic and hereditary MSI colorectal cancers. Finally, despite indistinguishable genetic predisposition for endometrial and colorectal cancers, instability profiles highlighting organ-specific differences, may be important HNPCC tumor spectrum determinants.
Resumo:
In this volume, 64 new and revised barley genetic stock (BGS) descriptions for 2010 are presented. The current lists of new and revised BGS descriptions are presented by BGS number order and by locus symbol in alphabetical order. Information on the description location, recommended locus name, chromosomal location, previous gene symbols, and the primary genetic stock (GSHO number and/or NGB number) are included in these lists.
Resumo:
Objective: To apply genetic analysis of genome-wide association data to study the extent and nature of a shared biological basis between migraine and coronary artery disease (CAD). Methods: Four separate methods for cross-phenotype genetic analysis were applied on data from 2 large-scale genome-wide association studies of migraine (19,981 cases, 56,667 controls) and CAD (21,076 cases, 63,014 controls). The first 2 methods quantified the extent of overlapping risk variants and assessed the load of CAD risk loci in migraineurs. Genomic regions of shared risk were then identified by analysis of covariance patterns between the 2 phenotypes and by querying known genome-wide significant loci. Results: We found a significant overlap of genetic risk loci for migraine and CAD. When stratified by migraine subtype, this was limited to migraine without aura, and the overlap was protective in that patients with migraine had a lower load of CAD risk alleles than controls. Genes indicated by 16 shared risk loci point to mechanisms with potential roles in migraine pathogenesis and CAD, including endothelial dysfunction (PHACTR1) and insulin homeostasis (GIP). Conclusions: The results suggest that shared biological processes contribute to risk of migraine and CAD, but surprisingly this commonality is restricted to migraine without aura and the impact is in opposite directions. Understanding the mechanisms underlying these processes and their opposite relationship to migraine and CAD may improve our understanding of both disorders.
Resumo:
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10−8). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
Resumo:
Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10−8), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ~2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
Resumo:
Endometriosis is primarily characterized by the presence of tissue resembling endometrium outside the uterine cavity and is usually diagnosed by laparoscopy. The most commonly used classification of disease, the revised American Fertility Society (rAFS) system to grade endometriosis into different stages based on disease severity (I to IV), has been questioned as it does not correlate well with underlying symptoms, posing issues in diagnosis and choice of treatment. Using two independent European genome-wide association (GWA) datasets and top-level classification of the endometriosis cases based on rAFS [minimal or mild (Stage A) and moderate-to-severe (Stage B) disease], we previously showed that Stage B endometriosis has greater contribution of common genetic variation to its aetiology than Stage A disease. Herein, we extend our previous analysis to four endometriosis stages [minimal (Stage I), mild (Stage II), moderate (Stage III) and severe (Stage IV) disease] based on the rAFS classification system and compared the genetic burden across stages. Our results indicate that genetic burden increases from minimal to severe endometriosis. For the minimal disease, genetic factors may contribute to a lesser extent than other disease categories. Mild and moderate endometriosis appeared genetically similar, making it difficult to tease them apart. Consistent with our previous reports, moderate and severe endometriosis showed greater genetic burden than minimal or mild disease. Overall, our results provide new insights into the genetic architecture of endometriosis and further investigation in larger samples may help to understand better the aetiology of varying degrees of endometriosis, enabling improved diagnostic and treatment modalities.
Resumo:
BACKGROUND There has been intensive debate whether migraine with aura (MA) and migraine without aura (MO) should be considered distinct subtypes or part of the same disease spectrum. There is also discussion to what extent migraine cases collected in specialised headache clinics differ from cases from population cohorts, and how female cases differ from male cases with respect to their migraine. To assess the genetic overlap between these migraine subgroups, we examined genome-wide association (GWA) results from analysis of 23,285 migraine cases and 95,425 population-matched controls. METHODS Detailed heterogeneity analysis of single-nucleotide polymorphism (SNP) effects (odds ratios) between migraine subgroups was performed for the 12 independent SNP loci significantly associated (p < 5 x 10(-8); thus surpassing the threshold for genome-wide significance) with migraine susceptibility. Overall genetic overlap was assessed using SNP effect concordance analysis (SECA) at over 23,000 independent SNPs. RESULTS: Significant heterogeneity of SNP effects (p het < 1.4 x 10(-3)) was observed between the MA and MO subgroups (for SNP rs9349379), and between the clinic- and population-based subgroups (for SNPs rs10915437, rs6790925 and rs6478241). However, for all 12 SNPs the risk-increasing allele was the same, and SECA found the majority of genome-wide SNP effects to be in the same direction across the subgroups. CONCLUSIONS Any differences in common genetic risk across these subgroups are outweighed by the similarities. Meta-analysis of additional migraine GWA datasets, regardless of their major subgroup composition, will identify new susceptibility loci for migraine.
Resumo:
OBJECTIVE To quantify genetic overlap between migraine and ischemic stroke (IS) with respect to common genetic variation. METHODS We applied 4 different approaches to large-scale meta-analyses of genome-wide data on migraine (23,285 cases and 95,425 controls) and IS (12,389 cases and 62,004 controls). First, we queried known genome-wide significant loci for both disorders, looking for potential overlap of signals. We then analyzed the overall shared genetic load using polygenic scores and estimated the genetic correlation between disease subtypes using data derived from these models. We further interrogated genomic regions of shared risk using analysis of covariance patterns between the 2 phenotypes using cross-phenotype spatial mapping. RESULTS We found substantial genetic overlap between migraine and IS using all 4 approaches. Migraine without aura (MO) showed much stronger overlap with IS and its subtypes than migraine with aura (MA). The strongest overlap existed between MO and large artery stroke (LAS; p = 6.4 x 10(-28) for the LAS polygenic score in MO) and between MO and cardioembolic stroke (CE; p = 2.7 x 10(-20) for the CE score in MO). CONCLUSIONS Our findings indicate shared genetic susceptibility to migraine and IS, with a particularly strong overlap between MO and both LAS and CE pointing towards shared mechanisms. Our observations on MA are consistent with a limited role of common genetic variants in this subtype.
Resumo:
STUDY QUESTION: Do DNA variants in the growth regulation by estrogen in breast cancer 1 (GREB1) region regulate endometrial GREB1 expression and increase the risk of developing endometriosis in women? SUMMARY ANSWER: We identified new single nucleotide polymorphisms (SNPs) with strong association with endometriosis at the GREB1 locus although we did not detect altered GREB1 expression in endometriosis patients with defined genotypes. WHAT IS ALREADY KNOWN: Genome-wide association studies have identified the GREB1 region on chromosome 2p25.1 for increasing endometriosis risk. The differential expression of GREB1 has also been reported by others in association with endometriosis disease phenotype. STUDY DESIGN, SIZE, DURATION: Fine mapping studies comprehensively evaluated SNPs within the GREB1 region in a large-scale data set (>2500 cases and >4000 controls). Publicly available bioinformatics tools were employed to functionally annotate SNPs showing the strongest association signal with endometriosis risk. Endometrial GREB1 mRNA and protein expression was studied with respect to phases of the menstrual cycle (n = 2-45 per cycle stage) and expression quantitative trait loci (eQTL) analysis for significant SNPs were undertaken for GREB1 [mRNA (n = 94) and protein (n = 44) in endometrium]. PARTICIPANTS/MATERIALS, SETTING, METHODS: Participants in this study are females who provided blood and/or endometrial tissue samples in a hospital setting. The key SNPs were genotyped using Sequenom MassARRAY. The functional roles and regulatory annotations for identified SNPs are predicted by various publicly available bioinformatics tools. Endometrial GREB1 expression work employed qRT-PCR, western blotting and immunohistochemistry studies. MAIN RESULTS AND THE ROLE OF CHANCE: Fine mapping results identified a number of SNPs showing stronger association (0.004 < P < 0.032) with endometriosis risk than the original GWAS SNP (rs13394619) (P = 0.034). Some of these SNPs were predicted to have functional roles, for example, interaction with transcription factor motifs. The haplotype (a combination of alleles) formed by the risk alleles from two common SNPs showed significant association (P = 0.026) with endometriosis and epistasis analysis showed no evidence for interaction between the two SNPs, suggesting an additive effect of SNPs on endometriosis risk. In normal human endometrium, GREB1 protein expression was altered depending on the cycle stage (significantly different in late proliferative versus late secretory, P < 0.05) and cell type (glandular epithelium, not stromal cells). However, GREB1 expression in endometriosis cases versus controls and eQTL analyses did not reveal any significant changes. LIMITATIONS, REASONS FOR CAUTION: In silico prediction tools are generally based on cell lines different to our tissue and disease of interest. Functional annotations drawn from these analyses should be considered with this limitation in mind. We identified cell-specific and hormone-specific changes in GREB1 protein expression. The lack of a significant difference observed following our GREB1 expression studies may be the result of moderate power on mixed cell populations in the endometrial tissue samples. WIDER IMPLICATIONS OF THE FINDINGS: This study further implicates the GREB1 region on chromosome 2p25.1 and the GREB1 gene with involvement in endometriosis risk. More detailed functional studies are required to determine the role of the novel GREB1 transcripts in endometriosis pathophysiology. STUDY FUNDING/COMPETING INTERESTS: Funding for this work was provided by NHMRC Project Grants APP1012245, APP1026033, APP1049472 and APP1046880. There are no competing interests.