972 resultados para ferrous sulphate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Triglycine selenate (TGSe) is isomorphous with Triglycine sulphate and is ferroelectric below 22°C. It is interesting to study the switching process in TGSe in the ferro-state with a view to comparing the results with TSG. The switching process was studied by applying electrical square pulses to produce fields up to 5 kV/cm on the sample, and measuring the parameters characterizing the transient current flowing in the sample, according to the Merz method. The temperature range in which the process was studied was 15°C to -20°C. The results were analysed by applying the Pulvari-Kuebler theory and the parameters α the activation field and µ the mobility of the domains were evaluated. It is found that µ varies with temperature in TGSe in a manner similar to TGS. µ is lesser for TGSe than for TGS for the same shift of temperature from Tc. The switching behaviour of γ-irradiated TGSe is qualitatively similar to that of unirradiated crystal eventhougth the process gets slowed down as a result of irradiation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-affinity riboflavin -binding protein was isolated and characterized for the first time from pregnant-rat sera by affinity chromatography on a lumiflavin-agarose column. The purified protein was homogeneous by the criteria of analytical polyacrylamide-gel disc electrophoresis, gel-filtration chromatography on Sephadex G-100 and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. It had a molecular weight of 90000+/-5000 and interacted with [14C]riboflavin with a 1:1 molar ratio with a dissociation constant (Kd) of 0.42 micron.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Latent transforming growth factor-beta (TGF-beta) binding proteins (LTBPs) -1, -3 and -4 are ECM components whose major function is to augment the secretion and matrix targeting of TGF-beta, a multipotent cytokine. LTBP-2 does not bind small latent TGF-beta but has suggested functions as a structural protein in ECM microfibrils. In the current work we focused on analyzing possible adhesive functions of LTBP-2 as well as on characterizing the kinetics and regulation of LTBP-2 secretion and ECM deposition. We also explored the role of TGF-beta binding LTBPs in endothelial cells activated to mimic angiogenesis as well as in malignant mesothelioma. We found that, unlike most adherent cells, several melanoma cell lines efficiently adhered to purified recombinant LTBP-2. Further characterization revealed that the adhesion was mediated by alpha3beta1 and alpha6beta1 integrins. Heparin also inhibited the melanoma cell adhesion suggesting a role for heparan sulphate proteoglycans. LTBP-2 was also identified as a haptotactic substrate for melanoma cell migration. We used cultured human embryonic lung fibroblasts to analyze the temporal and spatial association of LTBP-2 into ECM. By We found that LTBP-2 was efficiently assembled to the ECM only in confluent cultures following the deposition of fibronectin (FN) and fibrillin-1. In early, subconfluent cultures it remained primarily in soluble form after secretion. LTBP-2 colocalized transiently with FN and fibrillin-1. Silencing of fibrillin-1 expression by lentiviral shRNAs profoundly disrupted the deposition of LTBP-2 indicating that the ECM association of LTBP-2 depends on a pre-formed fibrillin-1 network. Considering the established role of TGF-beta as a regulator of angiogenesis we induced morphological activation of endothelial cells by phorbol 12-myristate 13-acetate (PMA) and followed the fate of LTBP-1 in the endothelial ECM. This resulted in profound proteolytic processing of LTBP-1 and release of latent TGF-beta complexes from the ECM. The processing was coupled with increased activation of MT-MMPs and specific upregulation of MT1-MMP. The major role of MT1-MMP in the proteolysis of LTBP-1 was confirmed by suppressing the expression with lentivirally induced short-hairpin RNAs as well as by various metalloproteinases inhibitors. TGF-beta can promote tumorigenesis of malignant mesothelioma (MM), which is an aggressive tumor of the pleura with poor prognosis. TGF-beta activity was analyzed in a panel of MM tumors by immunohistochemical staining of phosphorylated Smad-2 (P-Smad2). The tumor cells were strongly positive for P-Smad2 whereas LTBP-1 immunoreactivity was abundant in the stroma, and there was a negative correlation between LTBP-1 and P-Smad2 staining. In addition, the high P-Smad2 immunoreactivity correlated with shorter survival of patients. mRNA analysis revealed that TGF-beta1 was the most highly expressed isoform in both normal human pleura and MM tissue. LTBP-1 and LTBP-3 were both abundantly expressed. LTBP-1 was the predominant isoform in established MM cell lines whereas the expression of LTBP-3 was high in control cells. Suppression of LTBP-3 expression by siRNAs resulted in increased TGF-beta activity in MM cell lines accompanied by decreased proliferation. Our results suggest that decreased expression of LTBP-3 in MM could alter the targeting of TGF-beta to the ECM and lead to its increased activation. The current work emphasizes the coordinated process of the assembly and appropriate targeting of LTBPs with distinct adhesive or cytokine harboring properties into the ECM. The hierarchical assembly may have implications in the modulation of signaling events during morphogenesis and tissue remodeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The switching transients in dicalcium strontium propionate and azoxybenzene were studied by the use of the Merz method. It was observed that the switching time depends linearly on the applied electric field. Under similar electric fields, the switching processes in DSP and azoxybenzene are slower than in triglycine sulphate (TGS) at 27°C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ozone (O3) is a reactive gas present in the troposphere in the range of parts per billion (ppb), i.e. molecules of O3 in 109 molecules of air. Its strong oxidative capacity makes it a key element in tropospheric chemistry and a threat to the integrity of materials, including living organisms. Knowledge and control of O3 levels are an issue in relation to indoor air quality, building material endurance, respiratory human disorders, and plant performance. Ozone is also a greenhouse gas and its abundance is relevant to global warming. The interaction of the lower troposphere with vegetated landscapes results in O3 being removed from the atmosphere by reactions that lead to the oxidation of plant-related components. Details on the rate and pattern of removal on different landscapes as well as the ultimate mechanisms by which this occurs are not fully resolved. This thesis analysed the controlling processes of the transfer of ozone at the air-plant interface. Improvement in the knowledge of these processes benefits the prediction of both atmospheric removal of O3 and its impact on vegetation. This study was based on the measurement and analysis of multi-year field measurements of O3 flux to Scots pine (Pinus sylvestris L.) foliage with a shoot-scale gas-exchange enclosure system. In addition, the analyses made use of simultaneous CO2 and H2O exchange, canopy-scale O3, CO2 and H2O exchange, foliage surface wetness, and environmental variables. All data was gathered at the SMEAR measuring station (southern Finland). Enclosure gas-exchange techniques such as those commonly used for the measure of CO2 and water vapour can be applied to the measure of ozone gas-exchange in the field. Through analysis of the system dynamics the occurring disturbances and noise can be identified. In the system used in this study, the possible artefacts arising from the ozone reactivity towards the system materials in combination with low background concentrations need to be taken into account. The main artefact was the loss of ozone towards the chamber walls, which was found to be very variable. The level of wall-loss was obtained from simultaneous and continuous measurements, and was included in the formulation of the mass balance of O3 concentration inside the chamber. The analysis of the field measurements in this study show that the flux of ozone to the Scots pine foliage is generated in about equal proportions by stomatal and non-stomatal controlled processes. Deposition towards foliage and forest is sustained also during night and winter when stomatal gas-exchange is low or absent. The non-stomatal portion of the flux was analysed further. The pattern of flux in time was found to be an overlap of the patterns of biological activity and presence of wetness in the environment. This was seen to occur both at the shoot and canopy scale. The presence of wetness enhanced the flux not only in the presence of liquid droplets but also during existence of a moisture film on the plant surfaces. The existence of these films and their relation to the ozone sinks was determined by simultaneous measurements of leaf surface wetness and ozone flux. The results seem to suggest ozone would be reacting at the foliage surface and the reaction rate would be mediated by the presence of surface wetness. Alternative mechanisms were discussed, including nocturnal stomatal aperture and emission of reactive volatile compounds. The prediction of the total flux could thus be based on a combination of a model of stomatal behaviour and a model of water absorption on the foliage surfaces. The concepts behind the division of stomatal and non-stomatal sinks were reconsidered. This study showed that it is theoretically possible that a sink located before or near the stomatal aperture prevents or diminishes the diffusion of ozone towards the intercellular air space of the mesophyll. This obstacle to stomatal diffusion happens only under certain conditions, which include a very low presence of reaction sites in the mesophyll, an extremely strong sink located on the outer surfaces or stomatal pore. The relevance, or existence, of this process in natural conditions would need to be assessed further. Potentially strong reactions were considered, including dissolved sulphate, volatile organic compounds, and apoplastic ascorbic acid. Information on the location and the relative abundance of these compounds would be valuable. The highest total flux towards the foliage and forest happens when both the plant activity and ambient moisture are high. The highest uptake into the interior of the foliage happens at large stomatal apertures, provided that scavenging reactions located near the stomatal pore are weak or non-existent. The discussion covers the methodological developments of this study, the relevance of the different controlling factors of ozone flux, the partition amongst its component, and the possible mechanisms of non-stomatal uptake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assimilation of nitrate and various other inorganic nitrogen compounds by different yeasts was investigated. Nitrate, nitrite, hydroxylamine, hydrazine, ammonium sulphate, urea and L-asparagine were tested as sole sources of nitrogen for the growth of Candida albicans, C. pelliculosa, Debaryomyces hansenii, Saccharomyces cerevisiae, C. tropicalis, and C. utilis. Ammonium sulphate and L-asparagine supported the growth of all the yeasts tested except D. hansenii while hydroxylamine and hydrazine failed to support the growth of any. Nitrate and nitrite were assimilated only by C. utilis. Nitrate utilization by C. utilis was also accompanied by the enzymatic activities of NAD(P)H: nitrate oxidoreductase (EC 1.6.6.2) and NAD(P)H: nitrite oxidoreductase (EC 1.6.6.4), but not reduced methyl viologen-or FAD-nitrate oxidoreductases (EC 1.7.99.4). It is demonstrated here that nitrate and nitrite reductase activities are responsible for the ability of C. utilis to assimilate primary nitrogen.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lithium rubidium sulphate, LiRbSO4 (LRS), undergoes a sequence of four phase transitions at 166, 185, 202 and 204°C. The phase between 202 and 204°C is incommensurate. Polarized phonon Raman spectra in the frequency region of 50-1200 cm-1 are presented to identify the external and internal vibrational modes at room temperature. The internal mode frequencies of the sulphate ions are presented in the temperature region from -150 to 230°C covering all the phase transitions. The total integrated areas of the 1, 2 and 4 modes show an anomalous increase across the phase transitions. The frequencies of the symmetric stretching (1) and symmetric bending (2) modes do not show any changes at the phase transitions, but the width of the 2 mode shows changes across the phase transitions. A small increase in the linewidth of the 2 mode observed in the incommensurate phase is attributed to the influence of the incommensurate modulation wave. A DSC thermogram showed endothermic peaks during heating at all the phase transitions. The IR spectrum recorded at room temperature showed the expected Au and Bu internal modes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ferrous and ferric complexes of 2,4-dithiobiuret (Dtb) of the type Fe(Dtb)m Xn where m, n = 1-3, and X = CI–, Br–, I– and SO 4 2– , and a neutral Fe(Dtb-H)2 complex have been synthesized and characterised by elemental analyses, magnetic susceptibility, i.r., electronic and Mössbauer spectroscopic studies. From its i.r. spectrum Dtb was found to act as a S,S-coordinating bidentate chelate. The magnetic moment, electronic and Massbauer spectra are consistent with a low spin distorted octahedral structure for the ferric complexes and a high spin form for ferrous complexes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxidation of NADH by rat erythrocyte plasma membrane was stimulated by about 50-fold on addition of decavanadate, but not other forms of vanadate like orthovanadate, metavanadate aad vanadyl sulphate. The vanadate-stimulated activity was observed only in phosphate buffer while other buffers like Tris, acetate, borate and Hepes were ineffective. Oxygen was consumed during the oxidation of NADH and the products were found to be NAD+ and hydrogen peroxide. The reaction had a stoichiometry of one mole of oxygen consumption and one mole of H2O2 production for every mole of NADH that was oxidized. Superoxide dismutase and manganous inhibited the activity indicating the involvement of superoxide anions. Electron spin resonance in the presence of a spin trap, 5, 5prime-dimethyl pyrroline N-oxide, indicated the presence of superoxide radicals. Electron spin resonance studies also showed the appearance of VIV species by reduction of VV of decavanadate indicating thereby participation of vanadate in the redox reaction. Under the conditions of the assay, vanadate did not stimulate lipid peroxidation in erythrocyte membranes. Extracts from lipid-free preparations of the erythrocyte membrane showed full activity. This ruled out the possibility of oxygen uptake through lipid peroxidation. The vanadate-stimulated NADH oxidation activity could be partially solubilized by treating erythrocyte membranes either with Triton X-100 or sodium cholate. Partially purified enzyme obtained by extraction with cholate and fractionation by ammonium sulphate and DEAE-Sephadex was found to be unstable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A chitooligosaccharide specific lectin (Luffa acutangula agglutinin) has been purified from the exudate of ridge gourd fruits by affinity chromatography on soybean agglutininglycopeptides coupled to Sepharose-6B. The affinity purified lectin was found homogeneous by polyacrylamide gel electrophoresis, in sodium dodecyl sulphate-polyacrylamide gels, by gel filtration on Sephadex G-100 and by sedimentation velocity experiments. The relative molecular weight of this lectin is determined to be 48,000 ± 1,000 by gel chromatography and sedimentation equilibrium experiments. The sedimentation coefficient (S20, w) was obtained to be 4·06 S. The Stokes’ radius of the protein was found to be 2·9 nm by gel filtration. In sodium dodecyl sulphate-polyacrylamide gel electrophoresis the lectin gave a molecular weight of 24,000 in the presence as well as absence of 2-mercaptoethanol. The subunits in this dimeric lectin are therefore held by non-covalent interactions alone. The lectin is not a glycoprotein and circular dichroism spectral studies indicate that this lectin has 31% α-helix and no ß-sheet. The lectin is found to bind specifically to chitooligosaccharides and the affinity of the lectin increases with increasing oligosaccharide chain length as monitored by near ultra-violetcircular dichroism and intrinsic fluorescence titration. The values of ΔG, ΔΗ and ΔS for the binding process showed a pronounced dependence on the size of the oligosaccharide. The values for both ΔΗ and ΔS show a significant increase with increase in the oligosaccharide chain length showing that the binding of higher oligomers is progressively more favoured thermodynamically than chitobiose itself. The thermodynamic data is consistent with an extended binding site in the lectin which accommodates a tetrasaccharide. Based on the thermodynamic data, blue shifts and fluorescence enhancement, spatial orientation of chitooligosaccharides in the combining site of the lectin is assigned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanism of manganese electrodeposition from a sulphate bath on to a stainless-steel substrate has been studied by using current efficiency data to resolve the totali-E curves. A simple, two-step electron transfer mechanism:is proposed to explain the following experimentally obtained parameters: cathodic and anodic transfer coefficients, reaction order and stoichiometric number. The mechanism also explains the effect of pH oni o,Mn and on the corrosion currents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. Saline extract of sheep pancreas acetone-dried powder was shown to catalyse acyl ester hydrolysis of spinach leaf galactosyl diglycerides and also galactosylglucosyl diglyceride of Lactobacillus casei. 2. Sodium deoxycholate stimulated the enzyme activity. Ca2+ had no effect on the hydrolysis of monogalactosyl diglyceride, but it enhanced that of digalactosyl diglyceride. When added together, there was considerably less activity with both the substrates. 3. Optimal hydrolysis was observed at pH7.2. 4. The initial point of hydrolysis was at position-1, leading to the formation of monogalactosyl monoglyceride and digalactosyl monoglyceride. Further hydrolysis to the corresponding galactosylglycerols and later to galactose and glycerol was also observed, indicating the presence of a- and b-galactosidases in the enzyme preparation. 5. Formation of monogalactosyl diglyceride from digalactosyl diglyceride by the action of a-galactosidase was noted. 6. Monogalactosyl diglyceride was also hydrolysed by b-galactosidase to a limited extent, giving rise to diacylglycerol and galactose. 7. Attempts at purification of monogalactosyl diglyceride acyl hydrolase by using protamine sulphate treatment, Sephadex G-100 filtration and DEAE-cellulose chromatography gave a partially purified enzyme which showed 9- and 81-fold higher specific activity towards monogalactosyl diglyceride and digalactosyl diglyceride respectively. This still showed acyl ester hydrolysis activity towards methyl oleate, phosphatidylcholine and triacylglycerol. 8. When sheep, rat and guinea-pig tissues were compared, guinea-pig tissues showed the highest activity towards both monogalactosyl diglyceride and digalactosyl diglyceride. In all the species pancreas showed higher activity than intestine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lithium caesium sulphate has been reported to undergo a phase transition from the room temperature orthorhombic phase with space groupP cmn to a final phase with space groupP 22/n. Though a sharp anomaly in its physical properties has been found at 202.0;K, it was found that there was a need for careful investigations in the vicinity of 240 and 210.0;K. Since the changes in the crystal structure involve primarily a rotation of the SO4 tetrahedron about thec-axis and as this may be reflected both in the intensity and polarisation of the internal as well as external phonon modes, the laser Raman spectra of oriented single crystals of LiCsSO4 at different temperatures were investigated. For correlation and definite identification of the spectral features, its infrared absorption spectrum was also studied. An analysis of the intensities and polarizations of the internal modes of the sulphate ions reveals the change in symmetry of the crystal. The integrated intensity and peak height of thev 1 line, plotted against temperature show anomalous peaks in the region of the phase transition. Differential scanning calorimetric study gives the enthalpy change ΔH across the phase transition to be 0.213 kJ/mol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aspartate transcarbamylase is purified from mung bean seedlings by a series of steps involving manganous sulphate treatment, ammonium sulphate fractionation, DEAE-cellulose chromatography, followed by a second ammonium sulphate fractionation and finally gel filtration on Sephadex-G 100. The enzyme is homogeneous on ultracentrifugation and on polyacrylamide gel electrophoresis. It functions optimally at 55°C. It has two pH optima, one at 8.0 and the other at 10.2. The enzyme follows Michaelis-Menten kinetics with l-aspartate as the variable substrate. However, it exhibits sigmoid saturation curves at both the pH optima when the concentration of carbamyl phosphate is varied. The enzyme is allosterically inhibited by UMP at both the pH optima. Increasing phosphorylation of the uridine nucleotide decreases the inhibitory effect. The enzyme is desensitized to inhibition by UMP on treatment with p-hydroxymercuribenzoate, gel electrophoresis indicating that the enzyme is dissociated by this treatment; the dissociated enzyme can be reassociated by treatment with 2-mercaptoethanol. The properties of the mung bean enzyme are compared with the enzyme from other sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This doctoral thesis describes the development of a miniaturized capillary electrochromatography (CEC) technique suitable for the study of interactions between various nanodomains of biological importance. The particular focus of the study was low-density lipoprotein (LDL) particles and their interaction with components of the extracellular matrix (ECM). LDL transports cholesterol to the tissues through the blood circulation, but when the LDL level becomes too high the particles begin to permeate and accumulate in the arteries. Through binding sites on apolipoprotein B-100 (apoB-100), LDL interacts with components of the ECM, such as proteoglycans (PGs) and collagen, in what is considered the key mechanism in the retention of lipoproteins and onset of atherosclerosis. Hydrolytic enzymes and oxidizing agents in the ECM may later successively degrade the LDL surface. Metabolic diseases such as diabetes may provoke damage of the ECM structure through the non-enzymatic reaction of glucose with collagen. In this work, fused silica capillaries of 50 micrometer i.d. were successfully coated with LDL and collagen, and steroids and apoB-100 peptide fragments were introduced as model compounds for interaction studies. The LDL coating was modified with copper sulphate or hydrolytic enzymes, and the interactions of steroids with the native and oxidized lipoproteins were studied. Lipids were also removed from the LDL particle coating leaving behind an apoB-100 surface for further studies. The development of collagen and collagen decorin coatings was helpful in the elucidation of the interactions of apoB-100 peptide fragments with the primary ECM component, collagen. Furthermore, the collagen I coating provided a good platform for glycation studies and for clarification of LDL interactions with native and modified collagen. All methods developed are inexpensive, requiring just small amounts of biomaterial. Moreover, the experimental conditions in CEC are easily modified, and the analyses can be carried out in a reasonable time frame. Other techniques were employed to support and complement the CEC studies. Scanning electron microscopy and atomic force microscopy provided crucial visual information about the native and modified coatings. Asymmetrical flow field-flow fractionation enabled size measurements of the modified lipoproteins. Finally, the CEC results were exploited to develop new sensor chips for a continuous flow quartz crystal microbalance technique, which provided complementary information about LDL ECM interactions. This thesis demonstrates the potential of CEC as a valuable and flexible technique for surface interaction studies. Further, CEC can serve as a novel microreactor for the in situ modification of LDL and collagen coatings. The coatings developed in this study provide useful platforms for a diversity of future investigations on biological nanodomains.