960 resultados para fermentation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to produce biosurfactants through submerged fermentation using microorganisms isolated from soil contaminated with diesel. Microorganisms were isolated, characterized by the production of biosurfactants, and used to study the influence of type, induction and concentration of ammonium sulfate as a nitrogen source in the culture medium. The microorganisms that showed best results, in terms of production of biosurfactants, were identified as being of the genus Pseudomonas and Bacillus. The biosurfactants produced proved capable of reducing the surface tension of the media to 39 mN/m and 34 mN/m, respectively. Higher biosurfactant production was obtained in the medium containing 1% soybean oil without ammonium sulfate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This contribution discusses the state of the art and the challenges in producing biofuels, as well as the need to develop chemical conversion processes of CO2 in Brazil. Biofuels are sustainable alternatives to fossil fuels for providing energy, whilst minimizing the effects of CO2 emissions into the atmosphere. Ethanol from fermentation of simple sugars and biodiesel produced from oils and fats are the first-generation of biofuels available in the country. However, they are preferentially produced from edible feedstocks (sugar cane and vegetable oils), which limits the expansion of national production. In addition, environmental issues, as well as political and societal pressures, have promoted the development of 2nd and 3rd generation biofuels. These biofuels are based on lignocellulosic biomass from agricultural waste and wood processing, and on algae, respectively. Cellulosic ethanol, from fermentation of cellulose-derived sugars, and hydrocarbons in the range of liquid fuels (gasoline, jet, and diesel fuels) produced through thermochemical conversion processes are considered biofuels of the new generation. Nevertheless, the available 2nd and 3rd generation biofuels, and those under development, have to be subsidized for inclusion in the consumer market. Therefore, one of the greatest challenges in the biofuels area is their competitive large-scale production in relation to fossil fuels. Owing to this, fossil fuels, based on petroleum, coal and natural gas, will be around for many years to come. Thus, it is necessary to utilize the inevitable CO2 released by the combustion processes in a rational and economical way. Chemical transformation processes of CO2 into methanol, hydrocarbons and organic carbonates are attractive and relatively easy to implement in the short-to-medium terms. However, the low reactivity of CO2 and the thermodynamic limitations in terms of conversion and yield of products remain challenges to be overcome in the development of sustainable CO2 conversion processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coal, natural gas and petroleum-based liquid fuels are still the most widely used energy sources in modern society. The current scenario contrasts with the foreseen shortage of petroleum that was spread out in the beginning of the XXI century, when the concept of "energy security" emerged as an urgent agenda to ensure a good balance between energy supply and demand. Much beyond protecting refineries and oil ducts from terrorist attacks, these issues soon developed to a portfolio of measures related to process sustainability, involving at least three fundamental dimensions: (a) the need for technological breakthroughs to improve energy production worldwide; (b) the improvement of energy efficiency in all sectors of modern society; and (c) the increase of the social perception that education is a key-word towards a better use of our energy resources. Together with these technological, economic or social issues, "energy security" is also strongly influenced by environmental issues involving greenhouse gas emissions, loss of biodiversity in environmentally sensitive areas, pollution and poor solid waste management. For these and other reasons, the implementation of more sustainable practices in our currently available industrial facilities and the search for alternative energy sources that could partly replace the fossil fuels became a major priority throughout the world. Regarding fossil fuels, the main technological bottlenecks are related to the exploitation of less accessible petroleum resources such as those in the pre-salt layer, ranging from the proper characterization of these deep-water oil reservoirs, the development of lighter and more efficient equipment for both exploration and exploitation, the optimization of the drilling techniques, the achievement of further improvements in production yields and the establishment of specialized training programs for the technical staff. The production of natural gas from shale is also emerging in several countries but its production in large scale has several problems ranging from the unavoidable environmental impact of shale mining as well as to the bad consequences of its large scale exploitation in the past. The large scale use of coal has similar environmental problems, which are aggravated by difficulties in its proper characterization. Also, the mitigation of harmful gases and particulate matter that are released as a result of combustion is still depending on the development of new gas cleaning technologies including more efficient catalysts to improve its emission profile. On the other hand, biofuels are still struggling to fulfill their role in reducing our high dependence on fossil fuels. Fatty acid alkyl esters (biodiesel) from vegetable oils and ethanol from cane sucrose and corn starch are mature technologies whose market share is partially limited by the availability of their raw materials. For this reason, there has been a great effort to develop "second-generation" technologies to produce methanol, ethanol, butanol, biodiesel, biogas (methane), bio-oils, syngas and synthetic fuels from lower grade renewable feedstocks such as lignocellulosic materials whose consumption would not interfere with the rather sensitive issues of food security. Advanced fermentation processes are envisaged as "third generation" technologies and these are primarily linked to the use of algae feedstocks as well as other organisms that could produce biofuels or simply provide microbial biomass for the processes listed above. Due to the complexity and cost of their production chain, "third generation" technologies usually aim at high value added biofuels such as biojet fuel, biohydrogen and hydrocarbons with a fuel performance similar to diesel or gasoline, situations in which the use of genetically modified organisms is usually required. In general, the main challenges in this field could be summarized as follows: (a) the need for prospecting alternative sources of biomass that are not linked to the food chain; (b) the intensive use of green chemistry principles in our current industrial activities; (c) the development of mature technologies for the production of second and third generation biofuels; (d) the development of safe bioprocesses that are based on environmentally benign microorganisms; (e) the scale-up of potential technologies to a suitable demonstration scale; and (f) the full understanding of the technological and environmental implications of the food vs. fuel debate. On the basis of these, the main objective of this article is to stimulate the discussion and help the decision making regarding "energy security" issues and their challenges for modern society, in such a way to encourage the participation of the Brazilian Chemistry community in the design of a road map for a safer, sustainable and prosper future for our nation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Filamentous fungi were cultured under solid state fermentation of soybean residues to produce lipases. Enzymes produced by Aspergillus niger esterified oleic and butyric acids in the presence of ethanol, while enzymes produced by Aspergillus fumigatus demonstrated no esterification activity toward lauric acid. In case of A. niger, direct lyophilization of fermented bran led to higher esterification activity. The esterification of oleic acid by enzymes of A. fumigatus was neither influenced by pH adjustment nor by the extraction process. Conversions to ethyl esters were higher after pH adjustment with lyophilized liquid extract of A. niger.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1,3-propanediol is a high-value specialty chemical which has many industrial applications. Its main use is the production of the polymer polypropylene terephthalate, a thermoplastic used in the textile and automobile industries. The interest in 1,3-propanediol production from glycerol bio-conversion has increased after the employment of biodiesel by various countries, being produced by chemical synthesis from petroleum intermediates or biotechnologically by microbial fermentation. Glycerol is an abundant low-cost byproduct from biodiesel refineries, and it is the only substrate that can be naturally or enzymatically converted to 1,3-propanediol by microbial fermentation. In this review, information on 1,3-propanediol's importance, production and purification are presented, along with results from recent research on glycerol microbial conversion to 1,3-propanediol. The bio-production of this intermediate compound from glycerol is very attractive both economically and environmentally, since it allows the replacement of fossil fuels by renewable resources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, an experimental design was used to analyze the influence of process parameters on the production of extracellular enzymes such as β-glucosidase and peroxidase, and their possible effect on the obtention of soluble and nanostructured silica from rice husk ash by the action of the fungus Fusarium oxysporum. Specifically, pH, fermentation time and glucose concentration in the culture medium were varied. Statistical analysis indicated that the silica synthesis in the aqueous medium was strongly dependent on pH and time. Although the glucose concentration does not exert a direct influence on the biosynthesis of silica, it is an important parameter in the production of extracellular enzymes. To prevent enzyme inhibition and provide higher dissolution of silica, it is recommended to work at a pH close to neutral with a glucose concentration of 3 g L-1 for at least 144 h.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biological production of hydrogen through anaerobic fermentation has received increasing attention and offers a great potential as an alternative process for clean fuel production in the future. Considering biological systems for H2 production, anaerobic fermentation stands out, primarily due to its higher production of H2 compared with other biological processes. In addition the possibility of using different agro-industrial wastes as substrates opens up infinite possibilities. The development and implementation of sustainable processes for converting renewable materials into different value-added products is essential for the full exploitation of Brazilian agro-industrial wastes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the production of polyhydroxyalkanoates (PHAs) by fermentation of Crude Glycerin, a byproduct of the biodiesel industry, by Cupriavidus necator IPT 026, 027 and 028. The influence of fermentation time and temperature in shake flasks were evaluated. The highest PHA production (2.82 g L-1) occurred at 35 ºC for 72 h of fermentation. The melting and initial thermal degradation temperatures of this PHA were 177.9 ºC and 306.33 ºC, respectively, with 55% crystallinity. FTIR spectrum was similar to those reported in literature. The polymer obtained presented three different methyl esters of hydroxyalkanoates in its composition, with molecular weight of 630 kDa. Bacteria can use Crude Glycerin as an inexpensive substrate to produce value-added biodegradable products, such as PHA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this work was to study four different solvent mixtures intended to increase the yield of the extraction stage of clavulanic acid (CA), which is one of the steps in the purification process. Four central composite rotatable designs (CCRD) were utilized to optimize the solvent mixtures. The variables selected for the factorial design were solvent mixture ratio (mL/mL) and temperature (ºC). The results showed that the yield of CA extracted from fermentation broth with the solvent mixtures of methyl-ethyl-ketone and ethyl acetate, and methyl-isobutyl-ketone and ethyl acetate (44.7 and 50.0%, respectively) was higher than that of the individual ethyl acetate alone (36.5%).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integration a recovery process for spent sulfite liquor from a sulfite cooking process with a kraft pulp mill was studied in this thesis work. The process includes a fermentation process for the production of biofuel. The calculation for three cases was done. The three cases considered were with a spruce sulfite pulp production of 100, 250 and 1000 Adt/day corresponding to 10, 25 and 100% of the total pulp production. A kraft cooking process with prehydrolysis was taken in consideration as reference. Compared to kraft cooking with prehydrolysis a bigger amount of ethanol can be produced by sulfite cooking. In the kraft prehydrolysis case 40 t/day of ethanol and 1000 Adt/day pine pulp is produced and in the sulfite case the production is 113 t/day of ethanol and 1000 Adt/day of spruce pulp. The energy consumption in the sulfite process is assumed to be slightly higher than in the kraft prehydrolysis process. The recovery system for spent liquor mix was studied. The evaporation of the spent cooking liquors should be done separately. The approximately composition of melt was calculated. A comparison of all four cases was done and profitability was estimated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Airlift reactors are pneumatically agitated reactors that have been widely used in chemical, petrochemical, and bioprocess industries, such as fermentation and wastewater treatment. Computational Fluid Dynamics (CFD) has become more popular approach for design, scale-up and performance evaluation of such reactors. In the present work numerical simulations for internal-loop airlift reactors were performed using the transient Eulerian model with CFD package, ANSYS Fluent 12.1. The turbulence in the liquid phase is described using κ- ε the model. Global hydrodynamic parameters like gas holdup, gas velocity and liquid velocity have been investigated for a range of superficial gas velocities, both with 2D and 3D simulations. Moreover, the study of geometry and scale influence on the reactor have been considered. The results suggest that both, geometry and scale have significant effects on the hydrodynamic parameters, which may have substantial effects on the reactor performance. Grid refinement and time-step size effect have been discussed. Numerical calculations with gas-liquid-solid three-phase flow system have been carried out to investigate the effect of solid loading, solid particle size and solid density on the hydrodynamic characteristics of internal loop airlift reactor with different superficial gas velocities. It was observed that averaged gas holdup is significantly decreased with increasing slurry concentration. Simulations show that the riser gas holdup decreases with increase in solid particle diameter. In addition, it was found that the averaged solid holdup increases in the riser section with the increase of solid density. These produced results reveal that CFD have excellent potential to simulate two-phase and three-phase flow system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adsorption is one of the most commonly used methods in water treatment processes. It is attractive due to it easy operation and the availability of a wide variety of commercial adsorbents. This doctoral thesis focuses on investigating and explaining the influence of external phase conditions (temperature, pH, ionic strength, acidity, presence of cosolutes) on adsorption phenomena. In order to cover a wide range of factors and phenomena, case studies were chosen from various fields where adsorption is applied. These include the adsorptive removal of surface active agents (used in cleaning chemicals, for example) from aqueous effluents, the removal of hormones (estradiol) from drinking water, and the adsorption of antibiotics onto silica. The latter can beused to predict the diffusion of antibiotics in the aquatic system if they are released into the environment. Also the adsorption of living cells on functionalized polymers to purify infected water streams was studied. In addition to these examples, the adsorptive separation of harmful compounds from internal water streams within a chemical process was investigated. The model system was removal of fermentation inhibitors from lignocelluloses hydrolyzates. The detoxification of the fermentation broth is an important step in the manufacture of bioethanol from wood, but has not been studied previously in connection with concentrated acid hydrolyzates. New knowledge on adsorption phenomena was generated for all of the applications investigated. In most cases, the results could be explained by combining classical theories for individual phenomena. As an example, it was demonstrated how liquid phase aggregation could explain abnormal-looking adsorption equilibrium data. In addition to the fundamental phenomena, also process performance was of interest. This aspect is often neglected in adsorption studies. It was demonstrated that adsorbents should not be selected for a target application based on their adsorption properties only, but regeneration of the spent adsorbent must be considered. It was found that using a suitable amount of organic co-solvent in the regeneration can significantly improve the productivity of the process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The endogenous microbiota, constituting the microbes that live inside and on humans, is estimated to outnumber human cells by a factor of ten. This commensal microbial population has an important role in many physiological functions, with the densest microbiota population found in the colon. The colonic microbiota is a highly complex and diverse bacterial ecosystem, and a delicate balance exists between the gut microbiota and its host. An imbalance in the microbial ecosystem may lead to severe symptoms in and also beyond the gastrointestinal tract. Due to the important role of the gut microbiota in human health, means of its modification have been introduced in the dietary concepts of pro-, pre- and synbiotics. Prebiotics, which are usually carbohydrates, strive to selectively influence beneficial microbes resident in the colon with the aim of modifying the composition and functionality of the commensal microbial population towards a purportedly healthier one. The study of prebiotic effects on colonic micro-organisms is typically done by using human faecal material, though this provides relatively little information on bacterial populations and metabolic events in different parts of the colon. For this reason, several in vitro models have been developed to investigate the gut microbiota. The aim of this doctoral thesis was to screen through some of the promising prebiotic candidates, characterize their effects on the microbiota through the use of two in vitro methods (pure microbial cultures and a colon simulator model) and to evaluate their potential as emerging prebiotics or synbiotics when combined with the probiotic Bifidobacterium lactis . As a result of the screening work and subsequent colon simulation studies, several compounds with promising features were identified. Xylo-oligosaccharides (XOS), which have previously already shown promise as prebiotic compounds, were well fermented by several probiotic Bifidobacterium lactis strains in pure culture studies and in the following simulation studies utilizing the complex microbiota by endogenous B. lactis Another promising compound was panose, a trisaccharide belonging to isomalto-oligosaccharides (IMO) that also was also able to modify the microbiota in vitro by increasing the number of beneficial microbes investigated. Panose has not been widely studied previously and therefore, this thesis work provided the first data on panose fermentation in mixed colonic microbiota. Galacto-oligosaccharide (GOS) is an established prebiotic, and it was studied here in conjunction with another potential polygosaccharide polydextrose (PDX) and probiotic B. lactis Bi-07. In this final study, the synbiotics including GOS were more effective than the constituting pro- or prebiotics alone in modulating the microbiota composition, thus indicating a synergy resulting from the combination. The results obtained in this in vitro work can be, and have already been, utilized in product development aimed at the nutritional modification of the human colonic microbiota. Some of the compounds have entered the human clinical intervention phase to nvestigate in more detail the prebiotic and synbiotic properties seen in these in vitro studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microorganisms for biological control are capable of producing active compounds that inhibit the development of phytopathogens, constituting a promising tool toob tain active principles that could replace synthetic pesticides. This study evaluatedtheability of severalpotentialbiocontrol microorganismsto produce active extracellular metabolites. In vitro antagonistic capability of 50 bacterial isolates from rhizospheric soils of "criolla" potato (Solanum phureja) was tested through dual culture in this plant with different plant pathogenic fungi and bacteria. Isolates that showed significantly higher antagonistic activity were fermented in liquid media and crude extracts from the supernatants had their biological activities assessed by optical density techniques. Inhibitory effecton tested pathogens was observed for concentrations between 0.5% and 1% of crude extracts. There was a correlation between the antimicrobial activity of extracts and the use of nutrient-rich media in bacteria fermentation. Using a bioguided method, a peptidic compound, active against Fusarium oxysporum, was obtained from the 7ANT04 strain (Pyrobaculum sp.). Analysis by nuclear magnetic resonance and liquid chromatography coupled to mass detector evidenced an 11-amino acid compound. Bioinformatic software using raw mass data confirmed the presence of a cyclic peptide conformed by 11 mostly non-standard amino acids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prosessiteollisuudessa tarvitaan usein erilaisia apujärjestelmiä pääprosessin tueksi. Tyypillisiä tällaisia järjestelmiä ovat jäähdytys-, höyry- ja ilmajärjestelmät. Hyödykejärjestelmien kehitys jää helposti pääprosessin varjoon, joka usein johtaa tarpeettoman suuriin hyödykekustannuksiin ja järjestelmien teknisen tilan laskuun. Työn kirjallisuusosassa käsitellään Roal Oy:n fermentointiprosessin kannalta olennaisimpia hyödykevaatimuksia, niiden laskennallista ilmaisua ja vuorovaikutuksia sekä PINCH-menetelmää lämpöenergian hyötykäyttöön. Jäähdytysjärjestelmän osalta käydään läpi merkittävimmät laitetekniset ratkaisut, jäähdytystorni ja lämpöpumppu, toimintaperiaatteineen sekä luonnonvesien käyttö jäähdytykseen. Työn soveltavassa osassa seurattiin Aspergillus, Trichoderma ja Bacillus fermentointeja, joiden pohjalta luotiin kasvatuskohtainen empiirinen malli jäähdytystarpeen arviointiin perustuen sekoitustehoon, kasvatuksen hiilidioksidituottoon ja haihtumisen vaikutukseen. Kasvatuksien aikana seurattiin myös tilavuusperusteista lämmönsiirtokerrointa. Mitattujen lämmönsiirtokertoimien perustella laskettiin ominaislämmöntuottoon perustuva maksimilämpötila käytettävälle jäähdytysvedelle ja fermentorien maksimitilavuudet tunnetuilla kasvatusparametreilla eri lämpöisille jäähdytysvesille. Soveltavassa osassa käydään myös läpi Roalin höyry- ja kuumavesikulutukset ja tärkeimmät käyttökohteet. Mittaustulosten ja mallien perusteella on tehtiin kehitysehdotukset hyödykejärjestelmän optimoimiseksi.