977 resultados para enzyme immunoassay for rotavirus and adenovirus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work was designed to evaluate the effect of storage forms and conditions upon the enzyme activity of phytase and bioavaibility of calcium and phosphorus in broiler diets. The work was accomplished in two steps. The first step, made in the laboratory measured the activity of the phytase enzyme along the storage period. In this step, two experiments were performed: Experiment 1, constituted of 5 treatments (pure phytase stored at 0 °C, 4 °C and environmental temperature and mixed to vitamin and mineral supplement, stored at environmental temperature) in CRD and split plot scheme. The activities were evaluated every 14 days for 112 days of storage, being verified that the phytase storage in the pure form at 0o C was superior to the other treatments. Experiment 2, made up of 4 treatments (phytase mixed to the ration directly, directly and afterwards pelleted, via mineral supplement and via vitamin supplement),all the treatments being stored at environmental temperature, in CRD and split plot scheme. The activities were evaluated every 7 days for 56 days' storage, being verified that the storage of the phytase mixed to the ration via vitamin supplement and directly with the ration pelleted later, provoked a fall in phytase activity when compared with the other treatments. In the second step, the effect of phytase on the bioavaibility of calcium and phytic phosphorus was evaluated, 2 experiments being accomplished (3 and 4); in both experiments were utilized 576 broiler line chicks, housed in an array of heated batteries, receiving practical diets on the basis of corn and soybean meal (basal) for 21days. At the end of 27 days of age,96 birds were slaughtered for evaluation of the mineral contents (Ca and P) in the tíbias and plasma phosphorus. The excretae were collected from 22 to 27 days of age of the birds. Experiment 3: A CRD with the treatments in 2 x 3 x 2 +4 factorial arrangement was utilized, namely, two levels of total phosphorus (0.35 and 0.45% of total phosphorus), three leveis of phytase (500, 750 and 1,000 FTU) and four additional treatments with levels of 0.35 and 0.45 % of available phosphorus for each sex, with three replicates per treatment. There was significant interaction among levels of phosphorus and phytase (P< 0.05) for weight gain, ration consumption and feed conversion. Phytase did not indicate significant differences when the level 0.45% was utilized, nevertheless, at the level 0.35% as phytase was supplemented, weight gain, ration consumption and feed conversion were improved, chiefly with 1,000 FTU/Kg, in both sexes. The males presented greater weight gain. The ration consumption and feed conversion were equal to those of females. The contrast 0.45% did not affect the performance of males and females, the same not occurring with the level 0.35%,at which the available phosphorus was superior in both the sexes. The highest contents of ashes, phosphorus and calcium in the tíbias and plasma phosphorus were obtained with the levels of 750 and 1,000 FTU/Kg of phytase and 0.45% of total phosphorus. The males presented higher contents of ashes in the tibias. The level 0.45% of available phosphorus presented the greatest contents of ashes, calcium and phosphorus in the tibias, and phosphorus in the plasma. The lowest excretions of phosphorus occurred at the levels 0.35% of total phosphorus and 1,000FTU/kg of phytase. The lowest contents of ashes and calcium in the excretae were obtained with 0.35% and 1,000FTU/Kg of phytase. The females excreted smallest amounts of ashes, calcium and phosphorus than the males. Experiment 4: a CRD with the treatments in 3 x 4 x 2 factorial arrangement, namely, three levels of phytase (0, 500 and 1,000 FTU), four levels of calcium (0.7, 0.8, 0.9 and 1.0%) with four replicates per treatment. The performance was not affected by the treatments utilized, the males being superior to the females in weight gain, feed consumption and conversion. The contents of ashes in the tibias were not affected by the levels of phytase but as calcium levels raised, the ash contents increased. The contents of calcium and phosphorus in the tibias increased with the supplementation of 500 and 1,000 FTU/kg of phytase and with calcium levels. The utilization of phytase did not decrease the excretion of ashes, calcium and phosphorus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biotechnology movement in the Caribbean is a fledgling industry that has tremendous potential for development. It focuses on the use of fermentation and enzyme technologies, tissue culture and recombinant DNA (rDNA) technology and is more greatly applied to plant varieties rather than animal species. Tissue culture is by far the most developed type of technology but increasing attention is being paid to rDNA technology. Main areas include application in the agriculture sector but the use in medicine and biology are also being promoted. In its purest form, the term "biotechnology" refers to the use of living organisms or their products to modify human health and the human environment for commercial purposes. The term brings to mind many different things. Some think of developing new types of animals while others anticipate almost unlimited sources of human therapeutic drugs. Still others envision the possibility of growing crops that are more nutritious and naturally pest-resistant to feed a rapidly growing world population. Biotechnology in one form or another has flourished since prehistoric times. When the first human beings realized that they could plant their own crops and breed their own animals, they learned to use biotechnology. The discovery that fruit juices fermented into wine or that milk could be converted into cheese or yogurt, or that beer could be made by fermenting solutions of malt and hops began the study of biotechnology. When the first bakers found that they could make soft, spongy bread rather than a firm, thin cracker, they were acting as fledgling biotechnologists. The first animal breeders, realizing that different physical traits could be either magnified or lost by mating appropriate pairs of animals, engaged in the manipulations of biotechnology. Throughout human history, we have learned a great deal about the different organisms that our ancestors used so effectively. The marked increase in our understanding of these organisms and their cell products gains us the ability to control the many functions of various cells and organisms. Using the techniques of gene splicing and recombinant DNA technology, we can now actually combine the genetic elements of two or more living cells. Functioning lengths of DNA can be taken from one organism and placed into the cells of another organism. As a result, for example, we can cause bacterial cells to produce human molecules. Cows can produce more milk for the same amount of feed. And we can synthesize therapeutic molecules that have never before existed.