913 resultados para coded character set
Resumo:
BACKGROUND: A core outcome set (COS) can address problems of outcome heterogeneity and outcome reporting bias in trials and systematic reviews, including Cochrane reviews, helping to reduce waste. One of the aims of the international Core Outcome Measures in Effectiveness Trials (COMET) Initiative is to link the development and use of COS with the outcomes specified and reported in Cochrane reviews, including the outcomes listed in the summary of findings (SoF) tables. As part of this work, an earlier exploratory survey of the outcomes of newly published 2007 and 2011 Cochrane reviews was performed. This survey examined the use of COS, the variety of specified outcomes, and outcome reporting in Cochrane reviews by Cochrane Review Group (CRG). To examine changes over time and to explore outcomes that were repeatedly specified over time in Cochrane reviews by CRG, we conducted a follow-up survey of outcomes in 2013 Cochrane reviews.
METHODS: A descriptive survey of outcomes in Cochrane reviews that were first published in 2013. Outcomes specified in the methods sections and reported in the results section of the Cochrane reviews were examined by CRG. We also explored the uptake of SoF tables, the number of outcomes included in these, and the quality of the evidence for the outcomes.
RESULTS: Across the 50 CRGs, 375 Cochrane reviews that included at least one study specified a total of 3142 outcomes. Of these outcomes, 32 % (1008) were not reported in the results section of these reviews. For 23 % (233) of these non-reported outcomes, we did not find any reason in the text of the review for this non-report. Fifty-seven percent (216/375) of reviews included a SoF table.
CONCLUSIONS: The proportion of specified outcomes that were reported in Cochrane reviews had increased in 2013 (68 %) compared to 2007 (61 %) and 2011 (65 %). Importantly, 2013 Cochrane reviews that did not report specified outcomes were twice as likely to provide an explanation for why the outcome was not reported. There has been an increased uptake of SoF tables in Cochrane reviews. Outcomes that were repeatedly specified in Cochrane reviews by CRG in 2007, 2011, and 2013 may assist COS development.
Resumo:
his paper considers a problem of identification for a high dimensional nonlinear non-parametric system when only a limited data set is available. The algorithms are proposed for this purpose which exploit the relationship between the input variables and the output and further the inter-dependence of input variables so that the importance of the input variables can be established. A key to these algorithms is the non-parametric two stage input selection algorithm.
Resumo:
Although Answer Set Programming (ASP) is a powerful framework for declarative problem solving, it cannot in an intuitive way handle situations in which some rules are uncertain, or in which it is more important to satisfy some constraints than others. Possibilistic ASP (PASP) is a natural extension of ASP in which certainty weights are associated with each rule. In this paper we contrast two different views on interpreting the weights attached to rules. Under the first view, weights reflect the certainty with which we can conclude the head of a rule when its body is satisfied. Under the second view, weights reflect the certainty that a given rule restricts the considered epistemic states of an agent in a valid way, i.e. it is the certainty that the rule itself is correct. The first view gives rise to a set of weighted answer sets, whereas the second view gives rise to a weighted set of classical answer sets.
Resumo:
Answer Set Programming (ASP) is a popular framework for modelling combinatorial problems. However, ASP cannot be used easily for reasoning about uncertain information. Possibilistic ASP (PASP) is an extension of ASP that combines possibilistic logic and ASP. In PASP a weight is associated with each rule, whereas this weight is interpreted as the certainty with which the conclusion can be established when the body is known to hold. As such, it allows us to model and reason about uncertain information in an intuitive way. In this paper we present new semantics for PASP in which rules are interpreted as constraints on possibility distributions. Special models of these constraints are then identified as possibilistic answer sets. In addition, since ASP is a special case of PASP in which all the rules are entirely certain, we obtain a new characterization of ASP in terms of constraints on possibility distributions. This allows us to uncover a new form of disjunction, called weak disjunction, that has not been previously considered in the literature. In addition to introducing and motivating the semantics of weak disjunction, we also pinpoint its computational complexity. In particular, while the complexity of most reasoning tasks coincides with standard disjunctive ASP, we find that brave reasoning for programs with weak disjunctions is easier.
Resumo:
Boolean games are a framework for reasoning about the rational behaviour of agents, whose goals are formalized using propositional formulas. They offer an attractive alternative to normal-form games, because they allow for a more intuitive and more compact encoding. Unfortunately, however, there is currently no general, tailor-made method available to compute the equilibria of Boolean games. In this paper, we introduce a method for finding the pure Nash equilibria based on disjunctive answer set programming. Our method is furthermore capable of finding the core elements and the Pareto optimal equilibria, and can easily be modified to support other forms of optimality, thanks to the declarative nature of disjunctive answer set programming. Experimental results clearly demonstrate the effectiveness of the proposed method.
Resumo:
Possibilistic answer set programming (PASP) extends answer set programming (ASP) by attaching to each rule a degree of certainty. While such an extension is important from an application point of view, existing semantics are not well-motivated, and do not always yield intuitive results. To develop a more suitable semantics, we first introduce a characterization of answer sets of classical ASP programs in terms of possibilistic logic where an ASP program specifies a set of constraints on possibility distributions. This characterization is then naturally generalized to define answer sets of PASP programs. We furthermore provide a syntactic counterpart, leading to a possibilistic generalization of the well-known Gelfond-Lifschitz reduct, and we show how our framework can readily be implemented using standard ASP solvers.
Resumo:
Answer set programming is a form of declarative programming that has proven very successful in succinctly formulating and solving complex problems. Although mechanisms for representing and reasoning with the combined answer set programs of multiple agents have already been proposed, the actual gain in expressivity when adding communication has not been thoroughly studied. We show that allowing simple programs to talk to each other results in the same expressivity as adding negation-as-failure. Furthermore, we show that the ability to focus on one program in a network of simple programs results in the same expressivity as adding disjunction in the head of the rules.
Resumo:
Fuzzy answer set programming (FASP) is a generalization of answer set programming to continuous domains. As it can not readily take uncertainty into account, however, FASP is not suitable as a basis for approximate reasoning and cannot easily be used to derive conclusions from imprecise information. To cope with this, we propose an extension of FASP based on possibility theory. The resulting framework allows us to reason about uncertain information in continuous domains, and thus also about information that is imprecise or vague. We propose a syntactic procedure, based on an immediate consequence operator, and provide a characterization in terms of minimal models, which allows us to straightforwardly implement our framework using existing FASP solvers.
Resumo:
Hidden Markov models (HMMs) are widely used probabilistic models of sequential data. As with other probabilistic models, they require the specification of local conditional probability distributions, whose assessment can be too difficult and error-prone, especially when data are scarce or costly to acquire. The imprecise HMM (iHMM) generalizes HMMs by allowing the quantification to be done by sets of, instead of single, probability distributions. iHMMs have the ability to suspend judgment when there is not enough statistical evidence, and can serve as a sensitivity analysis tool for standard non-stationary HMMs. In this paper, we consider iHMMs under the strong independence interpretation, for which we develop efficient inference algorithms to address standard HMM usage such as the computation of likelihoods and most probable explanations, as well as performing filtering and predictive inference. Experiments with real data show that iHMMs produce more reliable inferences without compromising the computational efficiency.
Resumo:
Many problems in artificial intelligence can be encoded as answer set programs (ASP) in which some rules are uncertain. ASP programs with incorrect rules may have erroneous conclusions, but due to the non-monotonic nature of ASP, omitting a correct rule may also lead to errors. To derive the most certain conclusions from an uncertain ASP program, we thus need to consider all situations in which some, none, or all of the least certain rules are omitted. This corresponds to treating some rules as optional and reasoning about which conclusions remain valid regardless of the inclusion of these optional rules. While a version of possibilistic ASP (PASP) based on this view has recently been introduced, no implementation is currently available. In this paper we propose a simulation of the main reasoning tasks in PASP using (disjunctive) ASP programs, allowing us to take advantage of state-of-the-art ASP solvers. Furthermore, we identify how several interesting AI problems can be naturally seen as special cases of the considered reasoning tasks, including cautious abductive reasoning and conformant planning. As such, the proposed simulation enables us to solve instances of the latter problem types that are more general than what current solvers can handle.
Resumo:
Seafloor massive sulfide (SMS) mining will likely occur at hydrothermal systems in the near future. Alongside their mineral wealth, SMS deposits also have considerable biological value. Active SMS deposits host endemic hydrothermal vent communities, whilst inactive deposits support communities of deep water corals and other suspension feeders. Mining activities are expected to remove all large organisms and suitable habitat in the immediate area, making vent endemic organisms particularly at risk from habitat loss and localised extinction. As part of environmental management strategies designed to mitigate the effects of mining, areas of seabed need to be protected to preserve biodiversity that is lost at the mine site and to preserve communities that support connectivity among populations of vent animals in the surrounding region. These "set-aside" areas need to be biologically similar to the mine site and be suitably connected, mostly by transport of larvae, to neighbouring sites to ensure exchange of genetic material among remaining populations. Establishing suitable set-asides can be a formidable task for environmental managers, however the application of genetic approaches can aid set-aside identification, suitability assessment and monitoring. There are many genetic tools available, including analysis of mitochondrial DNA (mtDNA) sequences (e.g. COI or other suitable mtDNA genes) and appropriate nuclear DNA markers (e.g. microsatellites, single nucleotide polymorphisms), environmental DNA (eDNA) techniques and microbial metagenomics. When used in concert with traditional biological survey techniques, these tools can help to identify species, assess the genetic connectivity among populations and assess the diversity of communities. How these techniques can be applied to set-aside decision making is discussed and recommendations are made for the genetic characteristics of set-aside sites. A checklist for environmental regulators forms a guide to aid decision making on the suitability of set-aside design and assessment using genetic tools. This non-technical primer document represents the views of participants in the VentBase 2014 workshop.