987 resultados para broadband laser
Resumo:
A 32.1 W laser-diode-stack pumped acoustic-optic Q-switched Nd:YVO4 slab laser with hybrid resonator at 1064 nm was demonstrated with the pumping power of 112 W and repetition rate of 40 kHz, the pulse duration was 32.47 ns. The slope efficiency and optical-to-optical efficiency were 37 and 28.7%, respectively. At the repetition rate of 20 kHz and pumping power of 90 W, the average output power and pulse duration were 20.4 W and 20.43 ns, respectively. With the pumping power of 112 W, the beam quality M-2 factors in CW operation were measured to be 1.3 in stable direction and 1.6 in unstable direction.
Resumo:
A theoretical model is proposed to describe the microscopic processes involved in the ablation in fused silica induced by femtosecond-laser pulse. Conduction-band electron (CBE) can absorb laser energy, the rate is calculated by quantum mechanical method and classical method. CBE is produced via photoionization (PI) and impact ionization (II). The PI and II rates are calculated by using the Keldysh theory and double-flux model, respectively. Besides the CBE production, we investigate laser energy deposition and its distribution. The equation of energy diffusion in physical space is resolved numerically. Taking energy density E-dep=54 kJ/cm(3) as the criterion, we calculate damage threshold, ablation depth, and ablation volumes. It is found that if energy diffusion is considered, energy density near sample surface is reduced to 1/10, damage threshold is enhanced more than 30%, ablation depth is increased by a factor of 10. Our theoretical results agree well with experimental measurements. Several ultrafast phenomena in fused silica are also discussed. (C) 2004 American Institute of Physics.
Resumo:
We measured spectroscopic and laser action properties of a novel 8-position substituted pyrromethene-BF2, namely 1,3,5,7-tetramethyl-2,6-diethyl-8-n-propyl pyrromethene-BF2 complex. The laser action was performed with the corresponding dye solution in ethanol, which was placed in a Littman-type laser cavity pumped by the second harmonic of a Q-switched Nd:YAG laser. The spectroscopic measurements clearly indicated that the corresponding dye solution in ethanol exhibited intense absorption in the visible spectral region with large fluorescence quantum yield. It possesses rather low triplet-triplet absorption in the spectral region 460-550 nm and almost negligible triplet-triplet absorption in the lasing spectral region. As a consequence, it lases nearly as efficiently as commercially available benchmark laser dyes such as Rhodamine-6G and outperformed them in wavelength tunability in our laser cavity and pump geometry. (C) 2002 Optical Society of America.
Resumo:
Strong laser-field-induced autoionisation in the presence of both photoionising and radiative decay of the autoionising state (AS) is investigated, focusing on the laser intensity dependence of the photoemission and photoelectron spectra. In contrast to previous predictions, power broadening and increasing reduction of the doublet peak heights with field strength are found in the photoemission spectrum. Similar effects leading to considerable suppression and even complete disappearance of the lowest-order peaks in the photoelectron spectrum, together with peak switching, are also demonstrated, which are closely related to above-threshold ionisation. In addition, it is suggested that the total number of energetic photoelectrons may serve as an alternative to measuring the atomic parameters of the AS. All these effects are attributed to the presence of the strong `probe': laser-induced decay of the AS.
Resumo:
Resonant interaction of an autoionising state with a strong laser field is considered and effects of second-order ionisation processes are investigated. The authors show that these processes play a very important role in laser-induced autoionisation (LIA). They drastically affect the lowest-order peaks in the photoelectron spectrum. In addition to these peaks, high-order peaks due to ejection of energetic photoelectrons appear. For the laser intensities of current interest, second-order peaks are much stronger than the original ones, an important result that, they believe, can be observed experimentally. Moreover, `peak switching', a general feature of above-threshold ionisation, is also manifest in the electron spectrum of LIA.
Resumo:
Space-resolved spectra of line-shaped laser-produced magnesium plasmas in the normal direction of the target have been obtained using a pinhole crystal spectrograph. These spectra are treated by a spectrum analyzing code for obtaining the true spectra and fine structures of overlapped lines. The spatial distributions of electron temperature and density along the normal direction of the target surface have been obtained with different spectral diagnostic techniques. Especially, the electron density plateaus beyond the critical surface in line-shaped magnesium plasmas have been obtained with a fitting technique applied to the Stark-broadened Ly-alpha wings of hydrogenic ions. The difference of plasma parameters between those obtained by different diagnostic techniques is discussed. Other phenomena, such as plasma satellites, population inversion, etc., which are observed in magnesium plasmas, are also presented.
Resumo:
An experimental study on the angular distribution and conversion of multi-keV X-ray sources produced from 2 ns-duration 527nm laser irradiated thick-foil targets on Shenguang II laser facility (SG-II) is reported. The angular distributions measured in front of the targets can be fitted with the function of f(theta) = alpha+ (1- alpha)cos(beta) theta (theta is the viewing angle relative to the target normal), where alpha = 0.41 +/- 0.014, beta = 0.77 +/- 0.04 for Ti K-shell X-ray Sources (similar to 4.75 keV for Ti K-shell), and alpha = 0.085 +/- 0.06, beta = 0.59 +/- 0.07 for Ag/Pd/Mo L-shell X-ray Sources (2-2.8 keV for Mo L-shell, 2.8-3.5 keV for Pd L-shell, and 3-3.8 keV for Ag L-shell). The isotropy of the angular-distribution of L-shell emission is worse than that of the K-shell emission at larger viewing angle (>70 degrees), due to its larger optical depth (stronger self-absorption) in the cold plasma side lobe Surrounding the central emission region, and in the central hot plasma region (emission region). There is no observable difference in the angular distributions of the L-shell X-ray emission among Ag, Pd, and Mo. The conversion efficiency of Ag/Pd/Mo L-shell X-ray sources is higher than that of the Ti K-shell X-ray sources, but the gain relative to the K-shell emission is not as high as that by using short pulse lasers. The conversion efficiency of the L-shell X-ray sources decrease, with increasing atomic numbers (or X-ray photon energy), similar to the behavior of the K-shell X-ray Source.
Resumo:
A Nd:glass regenerative amplifier has been set up to generate the pumping pulse with variable pulse width for an optical parametric chirped-pulse amplification (OPCPA) laser system. Each pulse of the pulse train from a cw self-mode-locking femtosecond Ti:sapphire oscillator is stretched to approximate to300 ps at 1062 nm to be split equally and injected into a nonlinear crystal and the Nd:glass regenerative amplifier, as the chirped signal pulse train and the seed pulse train of the pumping laser system, respectively. By adjusting the cavity length of the regenerative amplifier directly, the width of amplified pulse could be varied continuously from approximate to300 ps to approximate to3 ns. The chirped signal pulse for the OPCPA laser system and the seed pulse for the pumping laser system come from the same oscillator, so that the time jitter between the signal pulse and the pumping pulse in optical parametric amplification stages could be <10 ps. (C) 2003 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The effect of temporal synchronization between the chirped signal pulse and the pumping pulse in an optical parametric chirped pulse amplification laser system is researched theoretically and experimentally. The results show that the gain of optical parametric amplification is sensitive to the temporal synchronization. Therefore, accurate temporal synchronization between the chirped signal pulse and the pumping pulse is essential to obtain high optical parametric amplification gain and stable output from an optical parametric chirped pulse amplification laser. Based on our 16.7-TW/120-fs optical parametric chirped pulse amplification laser system with similar to1-ns pumping pulse duration and <10-ps time jitter between the signal and pumping pulse, the effect of the temporal synchronization on optical parametric chirped pulse amplification is demonstrated. The experimental results agree with the calculation. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Near-degenerative near-collinear phase-match geometry for broadband optical parametric chirped-pulse amplification (OPCPA) at approximate to 780 nm is calculated in comparison with nondegenerate noncollinear phase-match geometry. In an experiment on LBO-I near-degenerate near-collinear OPCPA, high gain with broad gain bandwidth (approximate to 71 nm, FWHM) at approximate to 780 nm is achieved by using an approximate to 390-nm pumping pulse. The stretched broadband chirped signal pulse near 780 nm is amplified to approximate to 412 mu J with a pumping energy of approximate to 15 mJ, and the total gain is > 3.7 X 10(6), which agrees well with the calculation. For a broadband (covering approximate to 100 nm) chirped signal pulse, the theoretical gain bandwidth has been attained experimentally for the first time. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We propose a new x-ray laser mechanism that uses radiation from the strongest 3d --> 2p Ne-like resonance line in an optically thick plasma to radiatively drive population from the Ne-like ground state to the 3d state, which then lases to two 3p states. Collisional mixing of the 3p states with nearby 3s and 3d states depopulates the lower laser states. Modeling is presented for this mechanism in Ne-like Ar, and in experiments we observe one potential 3d --> 3p lasing transition at 45.1 nm in Ne-like Ar. (C) 1996 Optical Society of America
Resumo:
A compact multiterawatt laser system based on optical parametric chirped pulse amplification is demonstrated. Chirped pulses are amplified from 20 pJ to 900 mJ by two lithium triborate optical parametric preamplifiers and a final KDP optical parametric power amplifier with a pump energy of 5 J at 532 nm from Nd:YAG-Nd: glass hybrid amplifiers, After compression, we obtained a final output of 570-mJ-155-fs pulses with a peak power of 3.67 TW, which is the highest output power from an optical parametric chirped pulse amplification laser, to the best of our knowledge. (C) 2002 Optical Society of America.
Resumo:
The dynamic interaction processes between a nano-second laser pulse and a gas-puff target, such as those of plasma formation, laser heating, and x-ray emission, have been investigated quantitatively. Time and space-resolved x-ray and optical measurement techniques were used in order to investigate time-resolved laser absorption and subsequent x-ray generation. Efficient absorption of the incident laser energy into the gas-puff target of 17%, 12%, 38%, and 91% for neon, argon, krypton, and xenon, respectively, was shown experimentally. It was found that the laser absorption starts and, simultaneously, soft x-ray emission occurs. The soft x-ray lasts much longer than the laser pulse due to the recombination. Temporal evolution of the soft x-ray emission region was analyzed by comparing the experimental results to the results of the model calculation, in which the laser light propagation through a gas-puff plasma was taken into account. (C) 2003 American Institute of Physics.
Resumo:
Electron acceleration from the interaction of an intense short-pulse laser with low density plasma is considered. The relation between direct electron acceleration within the laser pulse and that in the wake is investigated analytically. The magnitude and location of the ponderomotive-force-caused charge separation field with respect to that of the pulse determine the relative effectiveness of the two acceleration mechanisms. It is shown that there is an optimum condition for acceleration in the wake. Electron acceleration within the pulse dominates as the pulse becomes sufficiently short, and the latter directly drives and even traps the electrons. The latter can reach ultrahigh energies and can be extracted by impinging the pulse on a solid target. (C) 2003 American Institute of Physics.
Resumo:
A self-consistent theory of plasma response to a single laser beam is proposed. The driving pump is not viewed as invariant during its interaction with the plasmas. Its modulation by the plasmas has an obvious influence on the strength of the wakefield behind the pulse. This suggests that the compression of the low-intensity pulse by the plasmas might be a possible way to excite largae-amplitude wakefield. (C) 2003 American Institute of Physics.