973 resultados para bilateral oligopoly


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to test the hypothesis that the bed nucleus of the stria terminalis (BST) and noradrenergic neurotransmission therein mediate cardiovascular responses to acute restraint stress in rats. Bilateral microinjection of the non-specific synaptic blocker CoCl2 (0.1nmol/100nl) into the BST enhanced the heart rate (HR) increase associated with acute restraint without affecting the blood pressure increase, indicating that synapses within the BST influence restraint-evoked HR changes. BST pretreatment with the selective 1-adrenoceptor antagonist WB4101 (15nmol/100nl) caused similar effects to cobalt, indicating that local noradrenergic neurotransmission mediates the BST inhibitory influence on restraint-related HR responses. BST treatment with equimolar doses of the 2-adrenoceptor antagonist RX821002 or the -adrenoceptor antagonist propranolol did not affect restraint-related cardiovascular responses, reinforcing the inference that 1-adrenoceptors mediate the BST-related inhibitory influence on HR responses. Microinjection of WB4101 into the BST of rats pretreated intravenously with the anticholinergic drug homatropine methyl bromide (0.2mg/kg) did not affect restraint-related cardiovascular responses, indicating that the inhibitory influence of the BST on the restraint-evoked HR increase could be related to an increase in parasympathetic activity. Thus, our results suggest an inhibitory influence of the BST on the HR increase evoked by restraint stress, and that this is mediated by local 1-adrenoceptors. The results also indicate that such an inhibitory influence is a result of parasympathetic activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diagonal band of Broca (DBB) is involved in cardiovascular control in rats, In the present Study, we report the effect of acute and reversible neurotransmission inhibition in the DBB by bilateral microinjection of the nonselective neurotransmission blocker CoCl(2) (1 mM, 100 nL) on the cardiac baroreflex response in unanesthetized rats. Local DBB neurotransmission inhibition did not affect baseline values of either blood pressure or heart rate, Suggesting no tonic DBB influence oil cardiovascular system activity. However, CoCl(2) microinjections enhanced both the reflex bradycardia associated with blood pressure increases caused by i.v. infusion of phenylephrine and tachycardiac response evoked by blood pressure decreases caused by i.v. infusion of sodium nitroprusside. An increase in baroreflex gain was also observed. Baroreflex returned to control values 60 min after CoCl(2) microinjections, confirming its reversible effect. In conclusion, our data suggest that synapses within DBB have a tonic inhibitory influence on both the cardiac parasympathetic and sympathetic components of the baroreflex. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bed nucleus of stria terminalis (BST) has a tonic modulating role on the baroreflex parasympathetic component. In the present study, we verified that local BST-adrenoceptors modulate baroreflex-evoked bradycardiac responses in unanesthetized rats. Bilateral microinjection of the selective alpha(1)-adrenoceptor antagonist WB4101 (15 nmol/100 nL) into the BST increased the gain of reflex bradycardia in response to mean arterial pressure increases caused by intravenous (i.v.) infusion of phenylephrine, suggesting that BST alpha(1)-adrenoceptors modulate baroreflex bradycardiac response. Bilateral microinjection of either the selective alpha(2)-adrenoceptor antagonist RX821002 (15 nmol/100 nL) or the non-selective beta-adrenoceptor antagonist propranolol (15 nmol/100 nL) into the BST had not affected baroreflex bradycardia. Animals were pretreated intravenously with the cholinergic muscarinic receptor antagonist homatropine methyl bromide (HMB, 1.5 mg/Kg) to test the hypothesis that activation of alpha(1)-adrenoceptors in the BST would modulate the baroreflex parasympathetic component. Baroreflex bradycardiac responses evoked before and after BST treatment with WB4101 were no longer different when rats were pretreated with HMB. These results suggest that parasympathetic activation accounts for the effects saw after BST pharmacological manipulation and ruling out the possibility of a sympathetic withdraw. In conclusion, our data point out that local alpha(1)-adrenoceptors mediate the BST tonic influence on the baroreflex bradycardiac response modulating parasympathetic cardiac activity. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ventral portion of medial prefrontal cortex (vMPFC) is involved in contextual fear-conditioning expression in rats. In the present study, we investigated the role of local N-methyl-D-aspartic acid (NMDA) glutamate receptors and nitric oxide (NO) in vMPFC on the behavioral (freezing) and cardiovascular (increase of arterial pressure and heart rate) responses of rats exposed to a context fear conditioning. The results showed that both freezing and cardiovascular responses to contextual fear conditioning were reduced by bilateral administration of NMDA receptor antagonist LY235959 (4 nmol/200 nL) into the vMPFC before reexposition to conditioned chamber. Bilateral inhibition of neuronal NO synthase (nNOS) by local vMPFC administration of the N omega-propyl-L-arginine (N-propyl, 0.04 nmol/200 nL) or the NO scavenger carboxy-PTI0 (1 nmol/200 A) caused similar results, inhibiting the fear responses. We also investigated the effects of inhibiting glutamate- and NO-mediated neurotransmission in the vMPFC at the time of aversive context exposure on reexposure to the same context. It was observed that the 1st exposure results in a significant attenuation of the fear responses on reexposure in vehicle-treated animals, which was not modified by the drugs. The present results suggest that a vMPFC NMDA-NO pathway may play an important role on expression of contextual fear conditioning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ventral portion of the medial prefrontal cortex comprises the prelimbic cortex (PL) and the infralimbic cortex (IL). Several studies have indicated that both the PL and the IL play an important role in cardiovascular control. Chemoreflex activation by systemic administration of potassium cyanide (KCN) evokes pressor and bradycardiac responses in conscious rats, in addition to an increase in respiratory frequency. We report here a comparison between the effects of pharmacological inhibition of PL and IL neurotransmission on blood pressure and heart rate responses evoked by chemoreflex activation using KCN (i.v.) in conscious rats. Bilateral microinjection of 200 nl of the unspecific synaptic blocker CoCl(2) (1 mm) into the PL evoked a significant attenuation of the pressor response, without affecting the chemoreflex-induced heart rate decrease. However, IL local synapse inhibition evoked no changes in cardiovascular responses induced by chemoreflex activation. Thus, our results suggest that the pressor but not the bradycardiac response to chemoreflex activation is, at least in part, mediated by local neurotransmission present in the PL cortex, without influence of the IL cortex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is conflicting evidence concerning the role of the bed nucleus of the stria terminalis (BNST) in fear and anxiety-elicited behavior. Most of the studies investigating this role, however, employed irreversible lesions of this nucleus. The objective of the present study was to investigate the effects of an acute and reversible inactivation of the BNST in rats submitted to the Vogel conflict test (VCT) and contextual fear conditioning, two widely employed animal models that are responsive to prototypal anxiolytic drugs. Male Wistar rats were submitted to stereotaxic surgery to bilaterally implant cannulae into the BNST. Ten minutes before the test they received bilateral microinjections of cobalt chloride (COCl(2)) (1 mM/100 nL), a nonselective synapse blocker. COCl(2) produced anxiolytic-like effects in tests, increasing the number of punished licks in the VCT and decreasing freezing behavior and the increase in mean arterial blood pressure and heart rate of animals re-exposed to the context where they had received electrical foot shocks 24 h before. The results indicate that the BNST is engaged in behavioral responses elicited by punished stimuli and aversively conditioned contexts, reinforcing its proposed role in anxiety. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently obtained evidence points to the involvement of the lateral habenular nuclei (LHb) in the mediation of coping defensive responses to threatening/stressful stimuli. Nevertheless, the role of this brain area in the regulation of defensive responses that have been associated with specific subtypes of anxiety disorders recognized in clinical settings is presently unknown. To address this question, we investigated the effects of either electrolytic lesions or chemical stimulation of the LHb on the defensive behaviors generated in rats by the elevated T-maze. This experimental model allows the measurement, in a same rat, of two defensive behaviors, inhibitory avoidance and escape, that have been related in terms of psychopathology to generalized anxiety and panic disorders, respectively. Bilateral electrolytic lesions of the LHb (1 mA, 10 s) impaired inhibitory avoidance acquisition and facilitated escape performance. On the other hand, chemical stimulation of the LHb by bilateral microinjection of kainic acid (30-60 pmol/0.2 mu L) had the opposite effect, i.e., facilitated inhibitory avoidance and impaired escape. The present results indicate that the LHb exerts an opposed regulatory control on generalized anxiety- and panic-related defensive responses in rats. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In rats, conditioned fear to context causes freezing immobility and cardiovascular changes. The dorsal hippocampus (DH) has a critical role in several memory processes, including conditioning fear to contextual information. To explore a possible involvement of the DH in contextual fear conditioning-evoked cardiovascular (mean arterial pressure and heart rate increases) and behavioral (freezing) responses, DH synaptic transmission was temporarily inhibited by bilateral microinjections of 500 nl of the nonselective synapse blocker, cobalt chloride (COCl2, 1 mmol/l), at different periods of the experimental procedure. During re-exposure to the foot shock chamber in which conditioning had taken place, bilateral DH inhibition 10 min before the conditioning session had no effect on either behavioral or cardiovascular responses. Bilateral DH inhibition immediately after the conditioning session (110 min) decreased both behavioral and cardiovascular responses during the context test. Finally, 48 h after the conditioning session, bilateral DH inhibition 10 min before re-exposure to the foot shock chamber significantly reduced cardiovascular responses but not freezing responses. These results suggest that contextual fear conditioning acquisition does not depend on the DH. This structure, however, is crucial for the consolidation of contextual fear. Moreover, although the DH appears to be less important for the behavioral (freezing) changes induced by re-exposure to the aversive conditioned context, it may play an important role on the cardiovascular responses generated by this model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dynamic exercise evokes sustained blood pressure and heart rate (HR) increases. Although it is well accepted that there is a CNS mediation of cardiovascular adjustments during dynamic exercise, information on the role of specific CNS structures is still limited. The bed nucleus of the stria terminalis (BST) is involved in exercise-evoked cardiovascular responses in rats. However, the specific neurotransmitter involved in BST-related modulation of cardiovascular responses to dynamic exercise is still unclear. In the present study, we investigated the role of local BST adrenoceptors in the cardiovascular responses evoked when rats are submitted to an acute bout of exercise on a rodent treadmill. We observed that bilateral microinjection of the selective alpha 1-adrenoceptor antagonist WB4101 into the BST enhanced the HR increase evoked by dynamic exercise without affecting the mean arterial pressure (MAP) increase. Bilateral microinjection of the selective alpha 2-adrenoceptor antagonist RX821002 reduced exercise-evoked pressor response without changing the tachycardiac response. BST pretreatment with the nonselective beta-adrenoceptor antagonist propranolol did not affect exercise-related cardiovascular responses. BST treatment with either WB4101 or RX821002 did not affect motor performance in the open-field test, which indicates that effects of BST adrenoceptor antagonism in exercise-evoked cardiovascular responses were not due to changes in motor activity. The present findings are the first evidence showing the involvement of CNS adrenoceptors in cardiovascular responses during dynamic exercise. Our results indicate an inhibitory influence of BST alpha 1-adrenoceptor on the exercise-evoked HR response. Data also point to a facilitatory role played by the activation of BST alpha 2-adrenoceptor on the pressor response to dynamic exercise. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paraventricular nucleus of the hypothalamus (PVN) has been implicated in several aspects of neuroendocrine and cardiovascular control The PVN contains parvocellular neurons that release the corticotrophin release ha mone (CRH) under stress situations In addition this brain area is connected to several limbic structures implicated in defensive behavioral control as well to forebrain and brainst m structures involved in cardiovascular control Acute restraint is an unavoidable stress situation that evokes corticosterone release as well as marked autonomic changes the latter characterized by elevated mean arterial pressure (MAP) intense heart rate (HR) Increases and decrease in the tail temperature We report the effect of PVN inhibition on MAP and HR responses corticosterone plasma levels and tail temperature response during acute restraint in rats Bilateral microinjection of the nonspecific synaptic blocker CoCl(2) (1 mM/100 nL) into the PVN reduced the pressor response it inhibited the increase in plasma corticosterone concentration as well as the fall in tail temperature associated with acute restraint stress Moreover bilateral microinjection of CoCl(2) into areas surrounding the PVN did not affect the blood pressure hormonal and tail vasoconstriction responses to restraint stress The present results show that a local PVN neurotransmission is involved in the neural pathway that controls autonomic and neuroendocrine responses which are associated with the exposure to acute restraint stress (C) 2010 Elsevier B V All rights reservi.d

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cannabidiol (CBD) is a non-psychotomimetic constituent of the Cannabis sativa plant that inhibits behavioral and cardiovascular responses to aversive situations. facilitating 5-HT(1A)-mediated neurotransmission. Previous results from our group suggest that the bed nucleus of the stria terminalis (BNST) may be involved in CBD`s anti-aversive effects. To investigate whether the cardiovascular effects of the CBD could involve a direct drug effect on the BNST, we evaluated the effects of CBD microinjection into this structure on baroreflex activity. We also verified whether these effects were mediated by the activation of 5-HT(1A) receptors. Bilateral microinjection of CBD (60 nmol/100 nL) into the BNST increased the bradycardiac response to arterial pressure increases. However, no changes were observed in tachycardiac responses evoked by arterial pressure decreases. Pretreatment of the BNST with the selective 5-HT(1A) receptor antagonist WAY100635 (0.37 nmol/100 nL) prevented CBD effects on the baroreflex activity. Moreover, microinjection of the 5-HT(1A) receptor agonist 8-OH-DPAT (4 nmol/100 nL) caused effects that were similar to those observed after the microinjection of CBD, which were also blocked by pretreatment with WAY100635. In conclusion, the present studies show that the microinjection of CBD into the BNST has a facilitatory influence on the baroreflex response to blood pressure increases, acting through the activation of 5-HT(1A) receptors. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study, we investigated the role played by the hypothalamic paraventricular nucleus (PVN) in the modulation of cardiac baroreflex activity in unanesthetized rats. Bilateral microinjections of the nonselective neurotransmission blocker CoCl(2) into the PVN decreased the reflex bradycardic response evoked by blood pressure increases, but had no effect on reflex tachycardia evoked by blood pressure decreases. Bilateral microinjections of the selective NMDA glutamate receptor antagonist LY235959 into the PVN caused effects that were similar to those observed after microinjections of CoCl(2), decreasing reflex bradycardia without affecting tachycardic response. The microinjection of the selective non-NMDA glutamate receptor antagonist NBQX into the PVN did not affect the baroreflex activity. Also, the microinjection of L-glutamate into the PVN increased the reflex bradycardia, an effect opposed to that observed after PVN treatment with CoCl(2) or LY235959, and this effect of L-glutamate was blocked by PVN pretreatment with LY235959. LY235959 injected into the PVN after iv. treatment with the selective beta(1)-adrenoceptor antagonist atenolol still decreased the reflex bradycardia. Taken together, our results suggest a facilitatory influence of the PVN on the bradycardic response of the baroreflex through activation of local NMDA glutamate receptors and a modulation of the cardiac parasympathetic activity. (C) 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical stimulation of the lateral nucleus of the habenula (LHb), an area implicated in the regulation of serotonergic activity in raphe nuclei, affects the acquisition of inhibitory avoidance and escape expression of rats submitted to the elevated T-maze test of anxiety. Here, we investigated whether facilitation of 5-HT-mediated neurotransmission in the dorsal periaqueductal gray (dPAG) accounts for the behavioral consequences in the elevated T-maze induced by chemical stimulation of the LHb. The dPAG in the midbrain, which is innervated by 5-HT fibers originating from the dorsal raphe nucleus (DRN), has been consistently implicated in the genesis/regulation of anxiety- and fear-related defensive responses. The results showed that intra-dPAG injection of WAY-100635 or ketanserin, 5-HT(1A) and 5-HT(2A/2C) receptor antagonists, respectively, counteracted the anti-escape effect caused by bilateral intra-LHb injection of kainic acid (60 pmol/0.2 mu l). Ketanserin, but not WAY-100635, blocked kainic acid`s facilitatory effect on inhibitory avoidance acquisition. Overall, the results suggest that the pathway connecting the LHb to the DRN is involved in the control of 5-HT release in the dPAG, and facilitation of 5-HT-mediated neurotransmission in the latter area distinctively impacts upon the expression of anxiety- and fear-related defensive behaviors. While stimulation of 5-HT(1A) receptors selectively affects escape performance, 5-HT(2A/2C) receptors modulate both inhibitory avoidance and escape. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute restraint is an unavoidable stress situation that evokes marked and sustained cardiovascular changes, which are characterized by blood pressure and heart rate increases. In the present study, we tested the hypothesis that insular cortex mediates cardiovascular responses to acute restraint stress in rats. To that purpose, the insular cortex synaptic transmission was inhibited by bilateral microinjection of the nonselective synaptic blocker cobalt chloride (CoCl(2), 1 mM/100 nL). Insular cortex pretreatment with CoCl(2) decreased restraint-evoked pressor and tachycardiac responses, thus indicating an involvement of synapses within the insular cortex on the modulation of cardiovascular responses to restraint stress. The present results indicate that insular cortex synapses exert a facilitatory influence on blood pressure and HR increase evoked by acute restraint stress in rats. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considering the evidence that the lateral septal area (LSA) modulates defensive responses, the aim of the present study is to verify if this structure is also involved in contextual fear conditioning responses. Neurotransmission in the LSA was reversibly inhibited by bilateral microinjections of cobalt chloride (CoCl(2), 1 mM) 10 min before or after conditioning or 10 min before re-exposure to the aversively conditioned chamber. Only those animals that received CoCl(2) before re-exposure showed a decrease in both cardiovascular and behavioral conditioned responses. These results suggest that the LSA participates in the expression, but not acquisition or consolidation, of contextual fear conditioning.