895 resultados para androgen receptor, co-activator, prostate cancer
Resumo:
BACKGROUND: Postmenopausal women with hormone receptor-positive early breast cancer have persistent, long-term risk of breast-cancer recurrence and death. Therefore, trials assessing endocrine therapies for this patient population need extended follow-up. We present an update of efficacy outcomes in the Breast International Group (BIG) 1-98 study at 8·1 years median follow-up. METHODS: BIG 1-98 is a randomised, phase 3, double-blind trial of postmenopausal women with hormone receptor-positive early breast cancer that compares 5 years of tamoxifen or letrozole monotherapy, or sequential treatment with 2 years of one of these drugs followed by 3 years of the other. Randomisation was done with permuted blocks, and stratified according to the two-arm or four-arm randomisation option, participating institution, and chemotherapy use. Patients, investigators, data managers, and medical reviewers were masked. The primary efficacy endpoint was disease-free survival (events were invasive breast cancer relapse, second primaries [contralateral breast and non-breast], or death without previous cancer event). Secondary endpoints were overall survival, distant recurrence-free interval (DRFI), and breast cancer-free interval (BCFI). The monotherapy comparison included patients randomly assigned to tamoxifen or letrozole for 5 years. In 2005, after a significant disease-free survival benefit was reported for letrozole as compared with tamoxifen, a protocol amendment facilitated the crossover to letrozole of patients who were still receiving tamoxifen alone; Cox models and Kaplan-Meier estimates with inverse probability of censoring weighting (IPCW) are used to account for selective crossover to letrozole of patients (n=619) in the tamoxifen arm. Comparison of sequential treatments to letrozole monotherapy included patients enrolled and randomly assigned to letrozole for 5 years, letrozole for 2 years followed by tamoxifen for 3 years, or tamoxifen for 2 years followed by letrozole for 3 years. Treatment has ended for all patients and detailed safety results for adverse events that occurred during the 5 years of treatment have been reported elsewhere. Follow-up is continuing for those enrolled in the four-arm option. BIG 1-98 is registered at clinicaltrials.govNCT00004205. FINDINGS: 8010 patients were included in the trial, with a median follow-up of 8·1 years (range 0-12·4). 2459 were randomly assigned to monotherapy with tamoxifen for 5 years and 2463 to monotherapy with letrozole for 5 years. In the four-arm option of the trial, 1546 were randomly assigned to letrozole for 5 years, 1548 to tamoxifen for 5 years, 1540 to letrozole for 2 years followed by tamoxifen for 3 years, and 1548 to tamoxifen for 2 years followed by letrozole for 3 years. At a median follow-up of 8·7 years from randomisation (range 0-12·4), letrozole monotherapy was significantly better than tamoxifen, whether by IPCW or intention-to-treat analysis (IPCW disease-free survival HR 0·82 [95% CI 0·74-0·92], overall survival HR 0·79 [0·69-0·90], DRFI HR 0·79 [0·68-0·92], BCFI HR 0·80 [0·70-0·92]; intention-to-treat disease-free survival HR 0·86 [0·78-0·96], overall survival HR 0·87 [0·77-0·999], DRFI HR 0·86 [0·74-0·998], BCFI HR 0·86 [0·76-0·98]). At a median follow-up of 8·0 years from randomisation (range 0-11·2) for the comparison of the sequential groups with letrozole monotherapy, there were no statistically significant differences in any of the four endpoints for either sequence. 8-year intention-to-treat estimates (each with SE ≤1·1%) for letrozole monotherapy, letrozole followed by tamoxifen, and tamoxifen followed by letrozole were 78·6%, 77·8%, 77·3% for disease-free survival; 87·5%, 87·7%, 85·9% for overall survival; 89·9%, 88·7%, 88·1% for DRFI; and 86·1%, 85·3%, 84·3% for BCFI. INTERPRETATION: For postmenopausal women with endocrine-responsive early breast cancer, a reduction in breast cancer recurrence and mortality is obtained by letrozole monotherapy when compared with tamoxifen montherapy. Sequential treatments involving tamoxifen and letrozole do not improve outcome compared with letrozole monotherapy, but might be useful strategies when considering an individual patient's risk of recurrence and treatment tolerability. FUNDING: Novartis, United States National Cancer Institute, International Breast Cancer Study Group.
Resumo:
Previously we determined that S81 is the highest stoichiometric phosphorylation on the androgen receptor (AR) in response to hormone. To explore the role of this phosphorylation on growth, we stably expressed wild-type and S81A mutant AR in LHS and LAPC4 cells. The cells with increased wild-type AR expression grow faster compared with parental cells and S81A mutant-expressing cells, indicating that loss of S81 phosphorylation limits cell growth. To explore how S81 regulates cell growth, we tested whether S81 phosphorylation regulates AR transcriptional activity. LHS cells stably expressing wild-type and S81A mutant AR showed differences in the regulation of endogenous AR target genes, suggesting that S81 phosphorylation regulates promoter selectivity. We next sought to identify the S81 kinase using ion trap mass spectrometry to analyze AR-associated proteins in immunoprecipitates from cells. We observed cyclin-dependent kinase (CDK)9 association with the AR. CDK9 phosphorylates the AR on S81 in vitro. Phosphorylation is specific to S81 because CDK9 did not phosphorylate the AR on other serine phosphorylation sites. Overexpression of CDK9 with its cognate cyclin, Cyclin T, increased S81 phosphorylation levels in cells. Small interfering RNA knockdown of CDK9 protein levels decreased hormone-induced S81 phosphorylation. Additionally, treatment of LNCaP cells with the CDK9 inhibitors, 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole and Flavopiridol, reduced S81 phosphorylation further, suggesting that CDK9 regulates S81 phosphorylation. Pharmacological inhibition of CDK9 also resulted in decreased AR transcription in LNCaP cells. Collectively these results suggest that CDK9 phosphorylation of AR S81 is an important step in regulating AR transcriptional activity and prostate cancer cell growth.
Resumo:
The molecular networks controlling bone homeostasis are not fully understood. The common evolution of bone and adaptive immunity encourages the investigation of shared regulatory circuits. MHC Class II Transactivator (CIITA) is a master transcriptional co-activator believed to be exclusively dedicated for antigen presentation. CIITA is expressed in osteoclast precursors, and its expression is accentuated in osteoporotic mice. We thus asked whether CIITA plays a role in bone biology. To this aim, we fully characterized the bone phenotype of two mouse models of CIITA overexpression, respectively systemic and restricted to the monocyte-osteoclast lineage. Both CIITA-overexpressing mouse models revealed severe spontaneous osteoporosis, as assessed by micro-computed tomography and histomorphometry, associated with increased osteoclast numbers and enhanced in vivo bone resorption, whereas osteoblast numbers and in vivo bone-forming activity were unaffected. To understand the underlying cellular and molecular bases, we investigated ex vivo the differentiation of mutant bone marrow monocytes into osteoclasts and immune effectors, as well as osteoclastogenic signaling pathways. CIITA-overexpressing monocytes differentiated normally into effector macrophages or dendritic cells but showed enhanced osteoclastogenesis, whereas CIITA ablation suppressed osteoclast differentiation. Increased c-fms and receptor activator of NF-κB (RANK) signaling underlay enhanced osteoclast differentiation from CIITA-overexpressing precursors. Moreover, by extending selected phenotypic and cellular analyses to additional genetic mouse models, namely MHC Class II deficient mice and a transgenic mouse line lacking a specific CIITA promoter and re-expressing CIITA in the thymus, we excluded MHC Class II expression and T cells from contributing to the observed skeletal phenotype. Altogether, our study provides compelling genetic evidence that CIITA, the molecular switch of antigen presentation, plays a novel, unexpected function in skeletal homeostasis, independent of MHC Class II expression and T cells, by exerting a selective and intrinsic control of osteoclast differentiation and bone resorption in vivo. © 2014 American Society for Bone and Mineral Research.
Resumo:
Cells of epithelial origin, e.g. from breast and prostate cancers, effectively differentiate into complex multicellular structures when cultured in three-dimensions (3D) instead of conventional two-dimensional (2D) adherent surfaces. The spectrum of different organotypic morphologies is highly dependent on the culture environment that can be either non-adherent or scaffold-based. When embedded in physiological extracellular matrices (ECMs), such as laminin-rich basement membrane extracts, normal epithelial cells differentiate into acinar spheroids reminiscent of glandular ductal structures. Transformed cancer cells, in contrast, typically fail to undergo acinar morphogenic patterns, forming poorly differentiated or invasive multicellular structures. The 3D cancer spheroids are widely accepted to better recapitulate various tumorigenic processes and drug responses. So far, however, 3D models have been employed predominantly in the Academia, whereas the pharmaceutical industry has yet to adopt a more widely and routine use. This is mainly due to poor characterisation of cell models, lack of standardised workflows and high throughput cell culture platforms, and the availability of proper readout and quantification tools. In this thesis, a complete workflow has been established entailing well-characterised 3D cell culture models for prostate cancer, a standardised 3D cell culture routine based on high-throughput-ready platform, automated image acquisition with concomitant morphometric image analysis, and data visualisation, in order to enable large-scale high-content screens. Our integrated suite of software and statistical analysis tools were optimised and validated using a comprehensive panel of prostate cancer cell lines and 3D models. The tools quantify multiple key cancer-relevant morphological features, ranging from cancer cell invasion through multicellular differentiation to growth, and detect dynamic changes both in morphology and function, such as cell death and apoptosis, in response to experimental perturbations including RNA interference and small molecule inhibitors. Our panel of cell lines included many non-transformed and most currently available classic prostate cancer cell lines, which were characterised for their morphogenetic properties in 3D laminin-rich ECM. The phenotypes and gene expression profiles were evaluated concerning their relevance for pre-clinical drug discovery, disease modelling and basic research. In addition, a spontaneous model for invasive transformation was discovered, displaying a highdegree of epithelial plasticity. This plasticity is mediated by an abundant bioactive serum lipid, lysophosphatidic acid (LPA), and its receptor LPAR1. The invasive transformation was caused by abrupt cytoskeletal rearrangement through impaired G protein alpha 12/13 and RhoA/ROCK, and mediated by upregulated adenylyl cyclase/cyclic AMP (cAMP)/protein kinase A, and Rac/ PAK pathways. The spontaneous invasion model tangibly exemplifies the biological relevance of organotypic cell culture models. Overall, this thesis work underlines the power of novel morphometric screening tools in drug discovery.
Resumo:
Fibroblast growth factors (FGFs) are involved in the development and homeostasis of the prostate and other reproductive organs. FGF signaling is altered in prostate cancer. Fibroblast growth factor 8 (FGF8) is a mitogenic growth factor and its expression is elevated in prostate cancer and in premalignant prostatic intraepithelial neoplasia (PIN) lesions. FGF8b is the most transforming isoform of FGF8. Experimental models show that FGF8b promotes several phases of prostate tumorigenesis - including cancer initiation, tumor growth, angiogenesis, invasion and development of bone metastasis. The mechanisms activated by FGF8b in the prostate are unclear. In the present study, to examine the tumorigenic effects of FGF8b on the prostate and other FGF8b expressing organs, an FGF8b transgenic (TG) mouse model was generated. The effect of estrogen receptor beta (ERβ) deficiency on FGF8binduced prostate tumorigenesis was studied by breeding FGF8b-TG mice with ERβ knockout mice (BERKOFVB). Overexpression of FGF8b caused progressive histological and morphological changes in the prostate, epididymis and testis of FGF8b-TG-mice. In the prostate, hyperplastic, preneoplastic and neoplastic changes, including mouse PIN (mPIN) lesions, adenocarcinomas, sarcomas and carcinosarcomas were present in the epithelium and stroma. In the epididymis, a highly cancer-resistant tissue, the epithelium contained dysplasias and the stroma had neoplasias and hyperplasias with atypical cells. Besides similar histological changes in the prostate and epididymis, overexpression of FGF8b induced similar changes in the expression of genes such as osteopontin (Spp1), connective tissue growth factor (Ctgf) and FGF receptors (Fgfrs) in these two tissues. In the testes of the FGF8b-TG mice, the seminiferous epithelium was frequently degenerative and the number of spermatids was decreased. A portion of the FGF8b-TG male mice was infertile. Deficiency of ERβ did not accelerate prostate tumorigenesis in the FGF8b-TG mice, but increased significantly the frequency of mucinous metaplasia and slightly the frequency of inflammation in the prostate. This suggests putative differentiation promoting and anti-inflammatory roles for ERβ. In summary, these results underscore the importance of FGF signaling in male reproductive organs and provide novel evidence for a role of FGF8b in stromal activation and prostate tumorigenesis.
Resumo:
Le cancer de la prostate (CaP) est le plus diagnostiqué chez les hommes au Canada et représente le troisième cancer le plus meurtrier au sein de cette population. Malgré l’efficacité des traitements de première ligne, de nombreux patients finiront par développer une résistance et, le cas échéant, verront leur CaP progresser vers une forme plus agressive. Plusieurs paramètres, essentiellement cliniques, permettent de prédire la progression du CaP mais leur sensibilité, encore limitée, implique la nécessité de nouveaux biomarqueurs afin de combler cette lacune. Dans cette optique nous nous intéressons au facteur de transcription NF-κB. Des études réalisées au laboratoire et ailleurs, associent RelA(p65) à un potentiel clinique dans le CaP, soulignant ainsi l’importance de la voie classique NF-κB. L’implication de la voie alternative NF-κB dans la progression du CaP a aussi été suggérée dans une de nos études illustrant la corrélation entre la distribution nucléaire de RelB et le score de Gleason. Alors que la voie classique est largement documentée et son implication dans la progression du CaP établie, la voie alternative, elle, reste à explorer. La présente thèse vise à clarifier l’implication de la voie alternative NF-κB dans le CaP et répond à deux objectifs fixés dans ce but. Le premier objectif fut d’évaluer l’impact de l'activation de la voie alternative NF-κB sur la biologie des cellules cancéreuses prostatiques. L’étude de la surexpression de RelB a souligné les effets de la voie alternative NF-κB sur la prolifération et l'autophagie. Étant ainsi impliquée tant dans la croissance tumorale que dans un processus de plus en plus associée à la progression tumorale, quoique potentiellement létal pour les cellules cancéreuses, son impact sur la tumorigénèse du CaP reste encore difficile à définir. Il n'existe, à ce jour, aucune étude permettant de comparer le potentiel clinique des voies classique et alternative NF-κB. Le second objectif de ce projet fut donc l'analyse conjointe de RelA(p65) et RelB au sein de mêmes tissus de patients atteints de CaP afin de déterminer l'importance clinique des deux signalisations NF-κB, l'une par rapport à l'autre. Le marquage immunofluorescent de RelA(p65) et RelB en a permis l'analyse quantitative et objective par un logiciel d'imagerie. Nos travaux ont confirmé le potentiel clinique associé à RelA(p65). La variable RelA(p65)/RelB s’est, elle, avérée moins informative que RelA(p65). Par contre, aucune corrélation entre RelB et les paramètres cliniques inclus dans l'étude n’est ressortie. En définitive, mon projet de thèse aura permis de préciser l'implication de la voie alternative NF-κB sur la biologie du CaP. Son impact sur la croissance des cellules cancéreuses prostatiques ainsi que sur l'autophagie, dénote l’ambivalence de la voie alternative NF-κB face à la tumorigénèse du CaP. L’étude exhaustive de la signalisation NF-κB souligne davantage l'importance de la voie classique dont l’intérêt clinique est principalement associé au statut de RelA(p65). Ainsi, bien que RelB n’affiche aucun potentiel en tant que biomarqueur exploitable en clinique, l’analyse de l’intervention de la voie alternative NF-κB sur la biologie des cellules cancéreuses prostatiques reste d’intérêt pour la compréhension de son rôle exact dans la progression du CaP.
Resumo:
El marcaje de proteínas con ubiquitina, conocido como ubiquitinación, cumple diferentes funciones que incluyen la regulación de varios procesos celulares, tales como: la degradación de proteínas por medio del proteosoma, la reparación del ADN, la señalización mediada por receptores de membrana, y la endocitosis, entre otras (1). Las moléculas de ubiquitina pueden ser removidas de sus sustratos gracias a la acción de un gran grupo de proteasas, llamadas enzimas deubiquitinizantes (DUBs) (2). Las DUBs son esenciales para la manutención de la homeostasis de la ubiquitina y para la regulación del estado de ubiquitinación de diferentes sustratos. El gran número y la diversidad de DUBs descritas refleja tanto su especificidad como su utilización para regular un amplio espectro de sustratos y vías celulares. Aunque muchas DUBs han sido estudiadas a profundidad, actualmente se desconocen los sustratos y las funciones biológicas de la mayoría de ellas. En este trabajo se investigaron las funciones de las DUBs: USP19, USP4 y UCH-L1. Utilizando varias técnicas de biología molecular y celular se encontró que: i) USP19 es regulada por las ubiquitin ligasas SIAH1 y SIAH2 ii) USP19 es importante para regular HIF-1α, un factor de transcripción clave en la respuesta celular a hipoxia, iii) USP4 interactúa con el proteosoma, iv) La quimera mCherry-UCH-L1 reproduce parcialmente los fenotipos que nuestro grupo ha descrito previamente al usar otros constructos de la misma enzima, y v) UCH-L1 promueve la internalización de la bacteria Yersinia pseudotuberculosis.
Resumo:
Revisión sistemática de la literatura tomando ensayos clínicos aleatorizados sobre el uso de la inyección intraprostática de la toxina botulínica en los pacientes con hiperplasia prostática benigna evaluando una escala validada de síntomas del tracto urinario bajo como desenlace primario
Resumo:
Phytoestrogens are polyphenolic secondary plant metabolites that have structural and functional similarities to 17β-oestradiol and have been associated with a protective effect against hormone-related cancers. Most foods in the UK only contain small amounts of phytoestrogens (median content 21 μg/100 g) and the highest content is found in soya and soya-containing foods. The highest phytoestrogen content in commonly consumed foods is found in breads (average content 450 μg/100 g), the main source of isoflavones in the UK diet. The phytoestrogen consumption in cases and controls was considerably lower than in Asian countries. No significant associations between phytoestrogen intake and breast cancer risk in a nested case-control study in EPIC Norfolk were found. Conversely, colorectal cancer risk was inversely associated with enterolignan intake in women but not in men. Prostate cancer risk was positively associated with enterolignan intake, however this association became non-significant when adjusting for dairy intake, suggesting that enterolignans can act as a surrogate marker for dairy or calcium intake.
Resumo:
As a consequence of its widespread use as an antimicrobial agent in consumer goods, triclosan has become distributed ubiquitously across the ecosystem, and recent reports that it can cause endocrine disruption in aquatic species has increased concern. It is reported here that triclosan possesses intrinsic oestrogenic and androgenic activity in a range of assays in vitro which could provide some explanation for the endocrine disrupting properties described in aquatic populations. In terms of oestrogenic activity, triclosan displaced [H-3]oestradiol from oestrogen receptors (ER) of MCF7 human breast cancer cells and from recombinant human ER alpha/ER beta. Triclosan at 10(-5) M completely inhibited the induction of the oestrogen-responsive ERE-CAT reporter gene in MCF7 cells by 10(-10) M 17 beta-oestradiol and the stimulation of growth of MCF7 human breast cancer cells by 10(-10) M 17 beta-oestradiol. On its own, 1 mu M triclosan increased the growth of MCF7 cells over 21 days. Triclosan also had androgenic activity. It displaced [H-3]testosterone from binding to the ligand binding domain of the rat androgen receptor (AR). Triclosan was able to inhibit the induction of the androgen-responsive LTR-CAT reporter gene in S115 mouse mammary tumour cells by 10(-9) M testosterone and in T47D human breast cancer cells by 10(-8) M testosterone at concentrations of 10(-7) M and 10(-6) M, respectively. Triclosan at 2 x 10(-5) M antagonized the stimulation of the growth of S115+A mouse mammary tumour cells by 10(-9) M testosterone. The finding that triclosan has oestrogenic and androgenic activity warrants further investigation in relation to both endocrine disruption of aquatic wildlife and any possible impact on human health. Copyright (C) 2007 John Wiley & Sons, Ltd.
Resumo:
It has been postulated that the R- and S-equol enantiomers have different biological properties given their different binding affinities for the estrogen receptor. S-(-)equol is produced via the bacterial conversion of the soy isoflavone daidzein in the gut. We have compared the biological effects of purified S-equol to that of racemic (R and S) equol on breast and prostate cancer cells of varying receptor status in vitro. Both racemic and S-equol inhibited the growth of the breast cancer cell line MDA-MB-231 (> or = 10 microM) and the prostate cancer cell lines LNCaP (> or = 5 microM) and LAPC-4 (> or = 2.5 microM). The compounds also showed equipotent effects in inhibiting the invasion of MDA-MB-231 and PC-3 cancer cells through matrigel. S-equol (1, 10, 30 microM) was unable to prevent DNA damage in MCF-7 or MCF-10A breast cells following exposure to 2-hydroxy-4-nonenal, menadione, or benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide. In contrast, racemic equol (10, 30 microM) prevented DNA damage in MCF-10A cells following exposure to 2-hydroxy-4-nonenal or menadione. These findings suggest that racemic equol has strong antigenotoxic activity in contrast to the purified S-equol enantiomer implicating the R-, rather than the S-enantiomer as being responsible for the antioxidant effects of equol, a finding that may have implications for the in vivo chemoprotective properties of equol.
Resumo:
Prostate cancer is one of the most frequent cancer types in Western societies and predominately occurs in the elderly male. The strong age-related increase of prostate cancer is associated with a progressive accumulation of oxidative DNA damage which is presumably supported by a decline of the cellular antioxidative defence during ageing. Risk of developing prostate cancer is much lower in many Asian countries where soy food is an integral part of diet. Therefore, isoflavones from soy were suggested to have chemopreventive activities in prostate cells. Here, we have investigated the hypothesis that the soy-isoflavone genistein could protect DNA of LAPC-4 prostate cells from oxidative stress-related damage by enhancing the expression of antioxidative genes and proteins. A 24 h preincubation with genistein (1-30 microM) protected cells from hydrogen peroxide-induced DNA damage, as determined by the comet assay. Analysis of two cDNA macroarrays, each containing 96 genes of biotransformation and stress response, revealed a modulated expression of 3 genes at 1 microM and of 19 genes at 10 microM genistein. Real-time PCR confirmed the induction of three genes encoding products with antioxidant activities, namely glutathione reductase (2.7-fold), microsomal glutathione S-transferase 1 (1.9-fold) and metallothionein 1X (6.3-fold), at 1-30 microM genistein. 17Beta-estradiol, in contrast, decreased the expression of metallothionein 1X at 0.3 microM (2.0-fold), possibly pointing to an estrogen receptor-mediated regulation of this gene. Immunocytochemical staining revealed an induction of metallothionein proteins at 30 microM genistein, while their intracellular localization was unaffected. Metallothioneins were previously found to protect cells from hydrogen peroxide-induced DNA damage. Hence, our findings indicate that genistein protects prostate cells from oxidative stress-related DNA damage presumably by inducing the expression of antioxidative products, such as metallothioneins. Genistein, therefore, might counteract the age-related decline of important antioxidative defence systems which in turn maintain DNA integrity.
Resumo:
The development of prostate cancer is believed to be a multistep process, progressing sequentially from normal epithelium, to prostatic intraepithelial neoplasia (PIN) and, finally, to invasive neoplasia. Malignant stem cells within the basal cell layer of the prostatic epithelium are believed to play an important role in the failure of androgen-ablation therapy that occurs in the most advanced form of prostate cancer. The aim of the present study was to immunohistochemically characterize the lesions of canine PIN. Prostatic tissue from five dogs with PIN was compared with normal prostate tissue from nine further dogs. There was an increase in the number of basal epithelial cells in lesions consistent with PIN as defined by expression of the nuclear protein p63. These lesions had elevated expression of proliferating cell nuclear antigen (PCNA) and heterogeneous labelling for the nuclear androgen receptor (AR). These findings suggest that the basal cells present in PIN may play a role in canine prostate carcinogenesis and that the proliferation of these cells occurs despite the heterogeneous expression of the AR. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)