933 resultados para alunite, thermal analysis, controlled rate thermal analysis, dehydration, dehydroxylation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Statement of problem. Denture bases may become increasingly weaker as a result of thermal stress and flexural cyclic loading. Information regarding this potential problem and its relationship to the denture base reline is limited.Purpose. This study evaluated the influence of thermal and mechanical stresses on the strength of intact and relined denture bases.Material and methods. Twenty-eight microwave-polymerized (Acron MC) intact denture bases were prepared in the shape of a 3-mm-thick maxillary denture. Additionally, fifty-six 2-mm-thick denture bases were relined with 1 mm of autopolymerizing resin (Tokuyama Rebase Fast II or New Truliner) (n = 28). Intact and relined specimens were divided into 4 groups (n = 7) as follows: without stress (control); a mechanical stress at 0.8 Hz for 10,000 cycles; 5000 thermal cycles between 5 degrees C and 55 degrees C; or a combination thermo-mechanical stress. The specimens were vertically loaded in compression with a rounded rod at 5 mm/min until failure, using a universal testing machine. Data on maximum fracture load (N), deflection at fracture (%), and fracture energy (N-mm) were analyzed by 2-way analysis of variance and Student-Newman-Keuls tests (alpha = .05).Results. The strength of the denture bases relined with New Truliner was not significantly affected by any of the experimental conditions, but comparing the control groups, New Truliner exhibited the lowest maximum fracture load values. The maximum fracture load of intact denture bases (P = .002) and those relined with Tokuyama Rebase Fast II (P = .01) showed a significant decrease after thermal stress. Additionally, cyclic loading significantly decreased the maximum fracture load (P < .001), deflection at fracture (P = .025), and fracture energy (P < .001) of intact denture bases and those relined with Tokuyama Rebase (P values of .002, .039, and .001, respectively).Conclusion. Thermal and mechanical stresses exert deleterious effects on the strength of intact and/or relined denture bases, which vary according to the relining material used.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives:Microleakage is a pre-stage of debonding between hard chairside relines and denture base acrylic resins. Therefore, it is important to assess them with regard to the longevity of the relined denture. This study investigated the effect of thermal cycling on the microleakage at the interface of three hard chairside reline resins and three denture base resins.Material and methods:Rectangular bars (12 mm x 3 mm x 3 mm) of Lucitone 550, Acron MC and QC 20 were made and relined with Kooliner, Tokuyama Rebase Fast II and Ufi Gel Hard, Lucitone 550, Acron MC and QC 20 resins. Specimens were divided into one control and two test groups (n = 10). In specimens of the control group, the microleakage was performed after the reline procedure. In Test Group 1, the specimens were stored for 24 h in distilled water at room temperature and in Test Group 2; the specimens were thermal cycled from 5 to 55 degrees C for 5000 cycles with a 30-s dwell time. Subsequently, all specimens were immersed in 50% silver nitrate solutions for 24 h. All specimens were sectioned longitudinally into three fractions and the lateral sections were examined (n = 20). Silver nitrate stain penetration was examined under a stereoscopic lens with x30 magnification, and the images were captured. Leica Qwin image analysis software was used to determine microleakage at the interface of the materials. Data were analysed using the Kruskal-Wallis test at a 95% level of significance.Results:For all cycles, there were no statistically significant differences between thermal cycled and non-thermal cycled groups (p > 0.05).Conclusion:It can be concluded that thermal cycling had no effect on the microleakage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study compared the tensile strength and fracture mechanism of tungsten inert gas (TIG) welds in cylindrical rods of commercially pure titanium (cp Ti) with those of laser welds and intact samples. Thirty dumbbell-shaped samples were developed by using brass rods as patterns. The samples were invested in casings, subjected to thermal cycles, and positioned in a plasma arc welding machine under argon atmosphere and vacuum, and titanium was injected under vacuum/pressure. The samples were X-rayed to detect possible welding flaws and randomly assigned to three groups to test the tensile strength and the fracture mechanism: intact, laser welding, and TIG welding. The tensile test results were investigated using ANOVA, which indicated that the samples were statistically similar. The fracture analysis showed that the cpTi samples subjected to laser welding exhibited brittle fracture and those subjected to TIG welding exhibited mixed brittle/ductile fracture with a predominance of ductile fracture with the presence of microcavities and cleavage areas. Intact samples presented the characteristic straightening in the fracture areas, indicating the ductility of the material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: Thermal injury causes catabolic processes as the body attempts to repair the damaged area. This study evaluated the effects of a scald injury on the morphology of muscle fibers belonging to a muscle distant from the lesion. Methods: Thirty Wistar rats were divided into control (C) and scalded (S) groups. Group S was scalded over 45% of the body surface, standardized by body weight. Rats in both groups were euthanized at four, seven and 14 days following the injury. The middle portions of the medial gastrocnemius muscles were sectioned, stained with hematoxylin and eosin and Picrosirius, and submitted to histological analysis. Results: Control group sections exhibited equidistantly distributed polygonal muscle fibers with peripheral nuclei, characteristic of normal muscle. The injured group sections did not consistently show these characteristics; many fibers in these sections exhibited a rounded contour, variable stain intensities, and greater interfiber distances. A substantially increased amount of connective tissue was also observed on the injured group sections. Conclusion: This experimental model found a morphological change in muscle distant from the site of thermal injury covering 45% of the body surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives. This study evaluated the effect of thermal- and mechanical-cycling on the shear bond strength of three low-fusing glassy matrix dental ceramics to commercial pure titanium (cpTi) when compared to conventional feldspathic ceramic fused to gold alloy.Methods. Metallic frameworks (diameter: 5 min, thickness: 4 mm) (N = 96, n = 12 per group) were cast in cpTi and gold alloy, airborne particle abraded with 150 mu m aluminum oxide. Low-fusing glassy matrix ceramics and a conventional feldspathic ceramic were fired onto the alloys (thickness: 4mm). Four experimental groups were formed; Gr1 (control group): Vita Omega 900-Au-Pd alloy; Gr2: Ticeram-cpTi; Gr3: Super Porcelain Ti-22-cpTi and G4: Vita Titankeramik-cpTi. While half of the specimens from each ceramic-metal combination were randomly tested without aging (water storage at 37 C for 24h only), the other half were first thermocycled (6000 cycles, between 5 and 55 C, dwell time: 13 s) and then mechanically loaded (20,000 cycles under SON load, immersion in distilled water at 37 C). The ceramic-alloy interfaces were loaded under shear in a universal test machine (cross-head speed: 0.5 mm/min) until failure occur-red. Failure types were noted and the interfaces of the representative fractured specimens from each group were examined with stereo microscope and scanning electron microscope (SEM). in an additional study (N = 16, n = 2 per group), energy dispersive X-ray spectroscopy (EDS) analysis was performed from ceramic-alloy interfaces. Data were analyzed using ANOVA and Tukey's test.Results. Both ceramic-metal combinations (p < 0.001) and aging conditions (p < 0,001) significantly affected the mean bond strength values. Thermal- and mechanical-cycling decreased the bond strength (MPa) results significantly for Gr3 (33.4 +/- 4.2) and Gr4 (32.1 +/- 4.8) when compared to the non-aged groups (42.9 +/- 8.9, 42.4 +/- 5.2, respectively). Gr1 was not affected significantly from aging conditions (61.3 +/- 8.4 for control, 60.7 +/- 13.7 after aging) (p > 0.05). Stereomicroscope images showed exclusively adhesive failure types at the opaque ceramic-cpTi interfacial zone with no presence of ceramic on the substrate surface but with a visible dark titanium oxide layer in Groups 2-4 except Gr1 where remnants of bonder ceramic was visible. EDS analysis from the interfacial zone for cpTi-ceramic groups showed predominantly 34.5-85.1% O(2) followed by 1.1-36.7% Aland 0-36.3% Si except for Super Porcelain Ti-22 where a small quantity of Ba (1.4-8.3%), S (0.7%) and Sn (35.3%) was found. In the Au-Pd alloy-ceramic interface, 56.4-69.9% O(2) followed by 15.6-26.2% Si, 3.9-10.9% K, 2.8-6% Na, 4.4-9.6% Al and 0-0.04% Mg was observed.Significance. After thermal-cycling for 6000 times and mechanical-cycling for 20,000 times, Triceram-cpTi combination presented the least decrease among other ceramic-alloy combinations when compared to the mean bond strength results with Au-Pd alloy-Vita Omega 900 combination. (c) 2008 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of 4 mass% Ag addition on the thermal behavior of the Cu-9 mass% Al alloy was studied using differential scanning calorimetry (DSC), optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). The results showed that the presence of silver causes (Cu)-alpha+(alpha+gamma1)-->(Cu)-alpha+beta transformation to occur in two stages. In the first one, part of the produced beta phase combines with the precipitated Ag to give a silver-rich phase and in the second one the transformation is completed. The formation of this silver-rich phase seems to be enhanced at very low cooling rates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Synthesis of silver nanoparticles by thermal treatment of a silver-aspartarne complex under inert atmosphere is described. Spherical metallic silver naroparticles with average diameter of 5 +/-2 nm were obtained by thermal treatment of the complex [Ag(C14H17N2O5)] 1/2H(2)O at 185 degrees C. Thermogravimetric and infrared analysis of the product show the occurrence of an ester bond cleavage of the aspartame ligand followed by rearrangement and release of a molecule of formaldehyde (H2CO), which is transformed in two strong reducing molecules, H-2 and CO. For silver reduction, the presence of the formaldehyde molecules seems to be the key process for the metallic nanoparticles fort-nation. The maintenance of the ligand crystalline structure, with the exception of the ester group loss, was noted as essential for nanoparticles formation and size control. The ligand crystalline structure was completely lost at 200 degrees C and particle growth and coalescence were observed above 250 degrees C. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The jeriva is a well-known fruit, which belongs to the Arecaceae family, Syagrus romanzoffiana species frequently found in Brazil. Extraction of the jeriva oil was carried out, and the fatty acid profile of this oil indicates the linoleic and oleic acid presence, around 29.35 and 28.89%, respectively. Thermogravimetry (TG), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC) were used to characterize this oil. Additionally, this oil was evaluated by DSC from 25 to -80 A degrees C, and the crystallization behavior was verified. Details concerning the thermal behavior as well as data of kinetic parameters of these stages have been described here. The obtained data were evaluated, and the values were plotted in activation energy (E (a)/kJ mol(-1)) in function of the conversion degree (alpha).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)