995 resultados para absorption measurement
Resumo:
A simple technique is devised io measure the angles of equilateral (60-deg) prisms, without using the expensive spectrometers, autocollimators, and angle gauges. The method can be extended to unpolished and opaque prisms made out of materials other than glass. (C) 1997 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We present experimental x-ray-absorption spectra at the oxygen and 3d transition-metal K edges of LaFeO3 and LaCoO3. We interpret the experimental results in terms of detailed theoretical calculations based on multiple-scattering theory. Along with providing an understanding of the origin of various experimental features, we investigate the effects of structural distortions and the core-hole potential in determining the experimental spectral shape. The results indicate that the core-hole potential as well as many-body effects within the valence electrons do not have any strong effect on the spectra suggesting that the spectral features can be directly interpreted in terms of the electronic structure of such compounds.
Resumo:
3,6-Dibromo-N-ethylcarbazole (DBNEC) and its polymeric analogue poly-3,6-dibromovinylcarbazole (PDBVCz) were studied by transient absorption spectroscopy. The transient absorption spectrum of the 3,6-dibromo-N-ethylcarbazole radical cation and decay rate constants of radical cations of 3,6-dibromo-N-ethylcarbazole and its polymeric analogue are presented. In the case of unsubstituted carbazole, the ratio of the yield of radical cation of monomer to polymer is 2.0, whereas in the case of PDBVCz, under the same experimental conditions, the yield of the radical cation is an order of magnitude less in comparison with the monomer model compound DBNEC. This drastic difference in yield has been correlated to the difference in the conformational structure of the polymer as evidenced by nuclear magnetic resonance spectroscopy. (C) 1997 Elsevier Science S.A.
Resumo:
Resonant microwave power absorption is examined for slabs exposed to TEM waves from both faces and for a slab placed on a reflecting support. Using the electric field distribution in the slab, the average power is obtained by integrating the spatially distributed power across the sample length. Due to constructive interference of the standing waves within the sample, the average power rises to a local maximum during a resonance. Irrespective of the material, resonances occur at integral values of L/lambda(s) when the slab is exposed to radiation from both faces and at L/lambda(s) = 0.5n-0.25 when placed on a reflecting support.
Resumo:
The non-resonant perturbation formula for the measurement of interaction impedance of a folded-waveguide slow-wave structure was derived for the relevant electromagnetic field configuration at the axis of the beam-hole of the structure. Efficacy of the theory was benchmarked through virtual measurement using 3D electromagnetic modeling in CST-studio.
Resumo:
A high speed photographic technique has been employed to measure the Sauter mean diameter of bubbles experimentally in a gas liquid ejector using a sodium chloride-air system. The measured values are compared with the theoretically predicted maximum bubble size diameter using Sprow's correlation. Bubble size as a function of the liquid flow rate and also of its distance from the throat of the ejector has been reported in this paper. The results obtained for this non-reactive system are also compared with those obtained earlier for the air-water system.
Resumo:
A fuzzy logic system is developed for helicopter rotor system fault isolation. Inputs to the fuzzy logic system are measurement deviations of blade bending and torsion response and vibration from a "good" undamaged helicopter rotor. The rotor system measurements used are flap and lag bending tip deflections, elastic twist deflection at the tip, and three forces and three moments at the rotor hub. The fuzzy logic system uses rules developed from an aeroelastic model of the helicopter rotor with implanted faults to isolate the fault while accounting for uncertainty in the measurements. The faults modeled include moisture absorption, loss of trim mass, damaged lag damper, damaged pitch control system, misadjusted pitch link, and damaged flap. Tests with simulated data show that the fuzzy system isolates rotor system faults with an accuracy of about 90-100%. Furthermore, the fuzzy system is robust and gives excellent results, even when some measurements are not available. A rule-based expert system based on similar rules from the aeroelastic model performs much more poorly than the fuzzy system in the presence of high levels of uncertainty.
Resumo:
The quantum yield of I*((2)p(1/2)) production from CH3I photolysis at 236 nm in the gas phase has been measured as 0.69 +/- 0.03. The implication is that direct excitation to the (1)Q(1) excited state is significant at this wavelength. The dynamics of I* formation at other excitation energies covering the entire A-band of absorption of CH3I has been discussed in the light of this measurement.
Resumo:
This is a review of the measurement of I If noise in certain classes of materials which have a wide range of potential applications. This includes metal films, semi-conductors, metallic oxides and inhomogeneous systems such as composites. The review contains a basic introduction to this field, the theories and models and follows it up with a discussion on measurement methods. There are discussions on specific examples of the application of noise spectroscopy in the field of materials science. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A simple technique is devised for making prisms with submultiple or half angles. As an application of these prisms, methods are suggested to measure the angles of the Pechan and Pellin-Broca prisms without using expensive spectrometers, autocollimators, and angle gauges. (C) 2002 Society of Photo-Optical Instrumentation Engineers.
Resumo:
We demonstrate a technique for precisely measuring hyperfine intervals in alkali atoms. The atoms form a three-level system in the presence of a strong control laser and a weak probe laser. The dressed states created by the control laser show significant linewidth reduction. We have developed a technique for Doppler-free spectroscopy that enables the separation between the dressed states to be measured with high accuracy even in room temperature atoms. The states go through an avoided crossing as the detuning of the control laser is changed from positive to negative. By studying the separation as a function of detuning, the center of the level-crossing diagram is determined with high precision, which yields the hyperfine interval. Using room temperature Rb vapor, we obtain a precision of 44 kHz. This is a significant improvement over the current precision of similar to1 MHz.
Direct measurement of phase of foreward-scattered light using polarization heterodyne interferometer
Resumo:
We describe direct measurement of phase of ballistic photons transmitted through objects hidden in a turbid medium using a polarization interferometer employing a rotating analyzer. The unwrapped phase difference measurements from interferometry was possible for medium levels of turbidity and accurate phase measurement from the sinusoidal intensity was not detectable when l/l* is increased beyond 4.3. The measured phase on reconstruction using standard tomographic algorithms resulted in the recovery of the refractive index profile of the object hidden in the turbid medium.
Resumo:
Absorption due to immersion in aqueous media consisting of either saline or seawater or due to exposure to water vapor conditions and the attendant effect on the compressive properties of syntactic foam reinforced with E-glass fibers in the form of chopped strands were studied. Whereas the compressive strength decreased in samples exposed to water vapor, the saline or seawater immersed samples showed increase when compared to the dry sample. The decrease in strength in the vapor-exposed case is ascribed to higher absorption of water and to debonding and damaged features for interfaces. The enhancement of strength values for the samples immersed in saltish media is traced to the larger size of the chloride ion and resultant changes in the stress state around the fiber-bearing regions. Recourse to an analysis of scanning electron microscopic pictures of the compression-failed samples is taken to explain the observed trends.
Resumo:
Two backward-facing models with step heights of 2 and 3 mm are used to measure the convective surface heat transfer rates by using platinum thin-film gauges, deposited on Macor inserts. Heat transfer rates have been theoretically calculated along the flat plate portion of a model using the Eckert reference temperature method. The experimentally determined surface heat transfer rate distributions are compared with theoretical and numerical estimations. Experimental heat flux distribution over a flat plate model showed good agreement with the reference temperature method at stagnation enthalpy range of 0.8-2 MJ/kg. Theoretical analysis has been used for downstream of a backward-facing step using Gai's nondimensional analysis. It has been found from the present study that approximately 10 and 8 step heights are required for the flow to reattach for 2 and 3 mm step height backward-facing step models, respectively, at a nominal Mach number of 7.6.